Semi-separability and conditions up to retracts** Lucrezia Bottegoni

Politecnico of Turin - University of Turin
Department of Mathematics "G. Peano", via Carlo Alberto 10, I-10123 Torino, Italy

In [1] we have introduced a weakening of the notions of separable [7] and naturally full [2] functors, that we have called semi-separable. Recall that a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is said to be separable if the associated natural transformation $\mathcal{F}: \operatorname{Hom}_{\mathcal{C}}(-,-) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F-, F-)$, mapping f to $F(f)$, has a left inverse, i.e. there is a natural transformation $\mathcal{P}: \operatorname{Hom}_{\mathcal{D}}(F-, F-) \rightarrow \operatorname{Hom}_{\mathcal{C}}(-,-)$ such that $\mathcal{P} \circ \mathcal{F}=\operatorname{Id}_{\operatorname{Hom}_{\mathcal{C}}(-,-)}$, whereas a naturally full functor is defined to satisfy a right version of this property. Semi-separable functors result to be relevant to provide novel characterizations of separable and naturally full functors. In this talk, we explore semi-separability in connection with functors admitting a fully faithful left or right adjoint, called coreflections and reflections [3], respectively. Being a coreflection (resp. reflection) is equivalent to the fact that the unit (resp. counit) of the corresponding adjunction is an isomorphism. Inspired by these notions and from [5], we say that a functor is a bireflection if it has a left and right adjoint equal, which is fully faithful and satisfies a coherence condition relating the unit and counit of the adjunctions. After providing a characterization of bireflections in terms of semi-separable (co)reflections, we introduce and investigate the notions of (co)reflection up to retracts and bireflection up to retracts, which do not depend on the existence of an adjoint, in parallel with the notion of equivalence up to retracts 44 assigned to a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ whose completion $F^{\natural}: \mathcal{C}^{\natural} \rightarrow \mathcal{D}^{\natural}$ is an equivalence. We show that the canonical quotient functor $H: \mathcal{C} \rightarrow \mathcal{C}_{e}$, associated to the coidentifier category \mathcal{C}_{e} [5] attached to a category \mathcal{C} and to an idempotent natural transformation $e: \operatorname{Id}_{\mathcal{C}} \rightarrow \operatorname{Id}_{\mathcal{C}}$, is a coreflection up to retracts. Moreover, it will result to be a bireflection up to retracts. Given an adjunction $(F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{D} \rightarrow \mathcal{C})$, with unit η and counit ϵ, we can consider the EilenbergMoore categories $\mathcal{C}_{G F}$ and $\mathcal{D}^{F G}$, of modules over the $\operatorname{monad}(G F, G \epsilon F, \eta)$ and of comodules over the comonad $(F G, F \eta G, \epsilon)$, respectively. When the right adjoint G is semi-separable, we prove that the comparison functor $K_{G F}: \mathcal{D} \rightarrow \mathcal{C}_{G F}, K_{G F} D=\left(G D, G \epsilon_{D}\right), K_{G F} f=G f$, is a bireflection up to retracts, and analogously so is the cocomparison functor $K^{F G}: \mathcal{C} \rightarrow \mathcal{D}^{F G}, K^{F G} C=\left(F C, F \eta_{C}\right)$, $K^{F G} f=F f$, when the left adjoint F is semi-separable. Furthermore, the semi-separability of the right adjoint G provides an equivalence between the associated Kleisli category $G F$-Free $\mathcal{C}_{\mathcal{C}}$ of free $G F$-modules [6] and $\mathcal{C}_{G F}$, after idempotent completion. As a consequence, these categories are also equivalent up to retracts to the coidentifier category associated to the semi-separable right adjoint. This is based on a joint work in progress with Alessandro Ardizzoni (University of Turin).

References

[1] Ardizzoni A., Bottegoni L., Semi-separable functors, preprint.
[2] Ardizzoni A., Caenepeel S., Menini C., Militaru G., Naturally full functors in nature. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 1, 233-250.
[3] Berger C., Iterated wreath product of the simplex category and iterated loop spaces. Adv. Math. 213 (2007), no. 1, 230-270.
[4] Chen X.-W., A note on separable functors and monads with an application to equivariant derived categories. Abh. Math. Semin. Univ. Hambg. 85 (2015), no. 1, 43-52.
[5] Freyd P. J., O’Hearn P. W., Power A. J., Street R., Takeyama M., Tennent R. D., Bireflectivity. Mathematical foundations of programming semantics (New Orleans, LA, 1995). Theoret. Comput. Sci. 228 (1999), no. 1-2, 49-76.
[6] Kleisli H., Every standard construction is induced by a pair of adjoint functors, Proc. Amer. Math. Soc. 16 (1965), 544-546.
[7] Nǎstǎsescu C., Van den Bergh M., Van Oystaeyen F., Separable functors applied to graded rings. J. Algebra 123 (1989), no. 2, 397-413.

[^0]
[^0]: * Joint work with Alessandro Ardizzoni (University of Turin). Abstract submitted to ItaCa 2021 Workshop.

