t-structures on ∞-categories with an application to mixed graded complexes

Emanuele Pavia
Università degli Studi di Milano

Abstract

Beilinson, Bernstein and Deligne introduced the notion of a t-structure on a triangulated category in [BBD82], with the intended goal to axiomatise the main properties of admissible abelian subcategories of a triangulated category. Since then, t-structures have provided a key tool for studying the homological properties of derived and triangulated categories, and have been successfully extended to the setting of higher (i.e., homotopical) algebra, see for example [Lur17]. In this talk, after recalling some basic definitions and motivations of the classical definition, I shall explain how these concepts are generalized in the ∞-categorical setting, providing some well known examples both in the classical and in the homotopical setting. Finally, I shall briefly introduce the concepts of filtered complexes and mixed graded complexes (in the sense of [PTVV13]), hinting at some of their many applications. After explicitly describing a t-structure on filtered complexes originally due to Beilinson ([Bei87]), I shall exhibit a t-structure on mixed graded complexes, describing how it interacts with the Beilinson t-structure on filtered complexes.

References

[Bei87] A. A. Beilinson. "On the derived category of perverse sheaves". In: K-theory, arithmetic and geometry (Moscow, 1984-1986). Vol. 1289. Lecture Notes in Math. Springer, Berlin, 1987, pp. 27-41. DOI: 10.1007/BFb0078365. URL: https://doi-org. pros.lib.unimi.it:2050/10.1007/BFb0078365.
[BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne. "Faisceaux pervers". In: Analysis and topology on singular spaces, I (Luminy, 1981). Vol. 100. Astérisque. Soc. Math. France, Paris, 1982, pp. 5-171.
[Lur17] Jacob Lurie. Higher Algebra. 2017. URL: http : / /www . math . harvard. edu / ~lurie/papers/HA.pdf.
[PTVV13] Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi. "Shifted symplectic structures". In: Publ. Math. Inst. Hautes Études Sci. 117 (2013), pp. 271-328. Issn: 0073-8301. DOI: 10.1007/s10240-013-0054-1. URL: https://doi.org/10. 1007/s10240-013-0054-1.

