Homotopy setoids and quotient completion

Cipriano Jr. Cioffo

UNIVERSITÀ DEGLI STUDI DI MILANO

2nd ItaCa workshop
Università degli Studi di Genova,
20-21 December.

Outline

(1) Part 1

- (Homotopy) Setoids
- Elementary doctrines
- Relative pretoposes
(2) Part 2

Setoids in Dependent type theory

Definition

A setoid is a pair (X, R) where X is a closed type and R is a dependent type $x_{1}, x_{2}: X \vdash R\left(x_{1}, x_{2}\right)$ which is an equivalence relation on X.

Intensional
$\operatorname{Id}_{A}(a, b) \neq a=b$

- Decidability of type check.
- Strong normalization.
- N-canonicity.

Extensional

$$
\operatorname{Id}_{A}(a, b) \equiv a=b
$$

- Functional extensionality.
- UIP.
- Quotients.

Hofmann [4]: Ext.TT $\xrightarrow{\text { SetoidModel }}$ Int.TT

Homotopy setoids

h-level

$$
\begin{aligned}
& 0 \text { is-contr}(C):=\sum_{c: C} \prod_{x: C} \operatorname{ld}_{A}(c, x) \\
& 1 \text { is- } \operatorname{prop}(P):=\prod_{x, y: P} \operatorname{ld}_{P}(x, y) \\
& 2 \text { is-set }(A):=\prod_{x, y: A} \text { is- } \operatorname{prop}\left(\operatorname{Id}_{A}(x, y)\right) \\
& \mathrm{n} \text { is-n+2-level }(X):=\prod_{x, y: X} \text { is-n+1-level }\left(\operatorname{ld}_{X}(x, y)\right)
\end{aligned}
$$

Definition

An h-setoids (X, R) is a setoid in which the type X is an h-set and the types $R\left(x_{1}, x_{2}\right)$ are h -propositions.

Categorical perspective

Facts

- Std is the exact completion of the wlex category Type.
- Std is a П-pretopos [7].

What about h-setoids?

Desiderata:

- (Local) cartesian closure
- Extensivity
- Well-behaved quotients of equivalence relations

Problem: Mismatch between "internal" and "external" notion of equivalence relation

Conseguence: h-Std is not Barr exact.
Possible solution: Change framework \rightarrow Elementary doctrines!

Elementary doctrines

$$
\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{lnfSL}
$$

- \mathscr{C} has strict finite products
- For every $X \in \mathscr{C}$ there exists an element $\delta_{X} \in P(X \times X)$ with

$$
\mathrm{P}(Y \times X) \rightleftarrows \stackrel{\perp}{\longleftarrow} \mathrm{P}(Y \times X \times X)
$$

Equivalently:

- $\mathrm{T}_{X} \leq \mathrm{P}_{\Delta_{X}}\left(\delta_{X}\right) \quad \vdash x=x$
- $\mathrm{P}(X)=$ Des $_{\delta_{X}} \quad x_{1}=x_{2}, A\left(x_{1}\right) \vdash A\left(x_{2}\right)$
- $\delta_{X} \boxtimes \delta_{Y} \leq \delta_{X \times Y} \quad x_{1}=x_{2}, y_{1}=y_{2} \vdash\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$

Main Examples I

(1) If \mathscr{C} is lex then

$$
\mathrm{Sub}_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

$$
\begin{aligned}
& \operatorname{Sub}_{\mathscr{C}}(X):=\{\lfloor m\rceil \mid m: M \gtrdot X\} \\
& \operatorname{Sub}_{\mathscr{C}}(f):=f^{*} \\
& \delta_{X}=\left\lfloor\Delta_{X}\right\rceil
\end{aligned}
$$

(2) If \mathscr{C} is qlex (= strict finite products and weak pullbacks) then

$$
\mathrm{PSub}_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

$$
\begin{aligned}
& \operatorname{PSub}_{\mathscr{C}}(X):=(\mathscr{C} \mid X)_{p o} \\
& \operatorname{PSub}_{\mathscr{C}}(f):=f^{*} \\
& \delta_{X}=\left\lfloor\Delta_{X}\right\rceil
\end{aligned}
$$

Main Examples II

(3) $F^{M L}:$ Type $^{o p} \rightarrow \operatorname{InfSL}$

$$
\begin{aligned}
F^{M L}(X):= & \{x: X \vdash B(x), \text { up to logical equivalence }\} \\
& x: X \vdash B(x) \leftrightarrow B^{\prime}(x) \text { true }
\end{aligned}
$$

if $y: Y \vdash t(y): X$, then

$$
F^{M L}(t)(B(x)):=B(t(y)) .
$$

$\delta_{X}=\operatorname{ld} \mathrm{X}$
(4) $\mathcal{T}_{2,1}: \mathbf{h}$ Set $^{o p} \longrightarrow \operatorname{InfSL}$

$$
\mathcal{T}_{2,1}(X):=\{x: X \vdash B(x) \mid \text { is-prop(B) true }\}
$$

$\delta_{X}=\mathrm{Id}_{\mathrm{X}}$ is an h-proposition

Equivalence relations and quotients

Let P be an elementary doctrine:

- A P-eq. relation on $X \in \mathscr{C}$ is an element $\rho \in \mathrm{P}(X \times X)$ s.t.

$$
\begin{array}{cc}
\delta_{X} \leq \rho, & \vdash_{x} x=x \\
\mathrm{P}_{\langle 2,1\rangle} \rho \leq \rho, & \rho\left(x_{1}, x_{2}\right) \vdash_{x_{1}, x_{2}} \rho\left(x_{2}, x_{1}\right) \\
\mathrm{P}_{\langle 1,2\rangle} \rho \wedge \mathrm{P}_{\langle 2,3\rangle} \rho \leq \mathrm{P}_{\langle 1,3\rangle} \rho, & \left.\rho\left(x_{1}, x_{2}\right), \rho\left(x_{2}, x_{3}\right) \vdash \bar{x} \rho\left(x_{1}, x_{3}\right)\right)
\end{array}
$$

- A quotient of ρ is an arrow $q: X \rightarrow C$ s.t.

$$
\rho \leq \mathrm{P}_{q \times q} \delta_{C} \quad \rho\left(x_{1}, x_{2}\right) \vdash_{x_{1}, x_{2}} q\left(x_{1}\right)=q\left(x_{2}\right)
$$

and for all $g: X \rightarrow Y$ s.t $\rho \leq \mathrm{P}_{q \times q} \delta_{Y}$ there exists a unique arrow h

Elementary quotient completion

$$
\overline{\mathrm{P}}: \overline{\mathscr{C}}^{o p} \rightarrow \operatorname{InfSL}
$$

	$\overline{\mathscr{C}}$	$\overline{\mathrm{P}}$
OBJECTS	(X, ρ)	$\overline{\mathrm{P}}(X, \rho):=$ Des $_{\rho}^{\star}$
MAPS	$\lfloor f\rceil:(X, \rho) \rightarrow(Y, \sigma)$	$\overline{\mathrm{P}}[f\rceil:=\mathrm{P}_{f}$
	${ }^{\star} \operatorname{Des}_{\rho}=\left\{A(x) \in \mathrm{P}(X) \mid \rho\left(x_{1}, x_{2}\right), A\left(x_{1}\right) \vdash_{x_{1}, x_{2}} A\left(x_{2}\right)\right\}$	

Theorem (Maietti-Rosolini [6])

Main examples

(1) If \mathscr{C} is qlex then:

$$
\mathrm{PSub}_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL} \quad \overline{\mathrm{PSub}_{\mathscr{C}}} \cong \mathrm{Sub}_{\mathscr{C}_{e x}}: \mathscr{C}_{e x}^{o p} \rightarrow \operatorname{InfSL}
$$

Pseudo eq. relations

$$
R \underset{r_{2}}{\stackrel{r_{1}}{\leftrightarrows}} X
$$

$$
\longleftrightarrow
$$

P-eq. relations

$$
\left.\left\lfloor<r_{1}, r_{2}\right\rangle: R \rightarrow X \times X\right\rceil
$$

(2) $F^{M L}:$ Type $^{o p} \rightarrow \operatorname{InfSL}$
$\overline{F^{M L}}: \mathbf{S t d}^{o p} \rightarrow \operatorname{InfSL}$
(3) $\mathcal{T}_{2,1}: \mathrm{h}-$ Set $^{o p}$ \qquad $\overline{\mathcal{T}_{2,1}}: \mathbf{h}-\mathbf{S t d}^{o p} \rightarrow \operatorname{InfSL}$

Review of theorems about LCC and Extensivity

Theorem (Carboni-Rosolini [1],Emmenegger [2])

If \mathscr{C} is a wlex and has right adjoint to weak pullback functors, then TFAE:
i) Every slice $\mathscr{C} \mid A$ has extentional exponentials,
ii) $\mathscr{C}_{e x}$ is locally cartesian closed.

Theorem (Gran-Vitale, [3])

If \mathscr{C} is wlex with sums, then TFAE:
i) \mathscr{C} is weakly lextensive,
ii) $\mathscr{C}_{\text {ex }}$ is extensive.

Theorem

If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{lnfSL}$ is an elementary doctrine with $\exists, \forall, \Longrightarrow$ and weak full comprehensions and comprehensive diagonals, then TFAE:
i) Every slice $\mathscr{C} \mid A$ has extentional exponentials,
ii) $\overline{\mathscr{C}}$ is locally cartesian closed.

- Maietti-Pasquali-Rosolini, [5]. Slice-wise weakly cartesian closed.

Extensivity

Theorem

If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow$ Frm is an elementary doctrine with \exists and full weak comprehensions and comprehensive diagonals, then TFAE:
i) \mathscr{C} is weakly lextensive,
ii) $\overline{\mathscr{C}}$ is extensive.

- $A+B$ vs. $A \vee B$:
- Assume + in the contexts $\Longrightarrow \mathscr{C}$ with coproducts.
- Assume v in the logic $\Longrightarrow \mathrm{P}(X) \in$ Frm.
- Define a notion of weakly lextensive w.r.t. a doctrine.

Relative pretoposes

Definition

A relative pretopos is an extensive category \mathscr{C} equipped with an elementary doctrine P in QED.

Example: Every pretopos \mathscr{C} is relative to $\mathrm{Sub}_{\mathscr{C}}$.
Theorem
\boldsymbol{h}-Std is a Π-pretopos relative to $\overline{\mathcal{T}_{2,1}}$.
Current investigations:

- h -Std as models of suitable type theories: $\mathbf{T T}_{I Q}, \mathbf{T T}_{E Q}, \mathbf{q m T T}$
- Internal logic of h-Std

Outline

(1) Part 1

(2) Part 2

- Weak doctrines
- Proof-irrelevant elements

Desiderata:

- Generalization of the theorems about Icc and extensivity
- A direct proof of the Icc
- A framework to which contains the "slice" of a doctrine P / A
- An internal description of pseudo equivalence relations for wlex categories
Problems: Weak finite products!

Weak finite products

Definition

A weak product of $X, Y \in \mathscr{C}$ is an object $X \xrightarrow{\mathrm{p}_{1}} W \stackrel{\mathrm{p}_{2}}{\leftrightarrows} Y$ such that

Examples:

- In Set, given two sets X, Y then $X \times Y \times\{0,1\}$ is a weak product of X and Y.
- In Type/A

$$
\begin{array}{rlrl}
\sum_{x: X, y: Y} \operatorname{ld}_{A}(f(x), g(y)) \xrightarrow{\pi_{2}} & Y \\
\pi_{1} \downarrow & & \downarrow g \\
X & & \\
& & A .
\end{array}
$$

Weak elementary doctrines

$$
\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

- \mathscr{C} has weak finite products
- For every $X \in \mathscr{C}$ and weak product $X \xrightarrow{\mathrm{p}_{1}} W \stackrel{\mathrm{p}_{2}}{\leftarrow} X$ there exists an element $\delta_{X}^{W} \in \mathrm{P}(W)$ s.t.
- $\mathrm{T}_{Z} \leq \mathrm{P}_{d}\left(\delta_{X}^{W}\right)$
- $\mathrm{P}(X)=\operatorname{Des}_{\delta_{X}^{W}}$
- $\delta_{Y}^{V} \leq \mathrm{P}_{f \times f} \delta_{X}^{W}$
- $\delta_{X}^{W} \in \mathcal{D e} s_{\delta_{X}^{W}} \boxtimes \delta_{X}^{W}$
- $\mathrm{T}_{X} \leq \mathrm{P}_{\Delta_{X}}\left(\delta_{X}\right)$
- $\mathrm{P}(X)=$ Des $_{\delta_{X}}$
- $\delta_{X} \boxtimes \delta_{Y} \leq \delta_{X \times Y}$

Examples I

(1) Every elementary doctrine P is a weak elementary doctrine. If $X \stackrel{\mathrm{p}_{1}}{\leftarrow} W \xrightarrow{\mathrm{p}_{2}} X$ is a weak product then there exists a unique arrow $\left\langle\mathrm{p}_{1}, \mathrm{p}_{2}\right\rangle: W \rightarrow X \times X$

$$
\delta_{X}^{W}:=\mathrm{P}_{\left\langle\mathrm{p}_{1}, \mathrm{p}_{2}\right\rangle} \delta_{X}
$$

(2) If \mathscr{C} is wlex then the functor $\mathrm{PSub}_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is a weak elementary doctrine and

$$
\delta_{X}^{W}:=\lfloor e\rceil
$$

where

$$
E \xrightarrow{e} W \xrightarrow[\mathrm{p}_{2}]{\xrightarrow[\mathrm{p}_{1}]{ }} X
$$

is a weak equalizer of p_{1}, p_{2}.

Examples II

(3) If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{lnfSL}$ is a (weak) elementary doctrine with weak comprehensions and comprehensive diagonals and $A \in \mathscr{C}$ then the slice doctrine is a weak elementary doctrine:

$$
\mathrm{P}_{/ A}: \mathscr{C} / A^{o p} \rightarrow \operatorname{InfSL}
$$

$$
\begin{aligned}
& \mathrm{P}_{/ A}(x: X \rightarrow A):=\mathrm{P}(X) \\
& \mathrm{P}_{/ A}(f: y \rightarrow x):=\mathrm{P}_{f} \\
& \mathrm{P}_{/ A}(w)=\mathrm{P}\left(X \times_{A} X\right) \text { and } \\
& \quad \delta_{x}^{w}:=\mathrm{P}_{\left.<\pi_{1}, \pi_{2}\right\rangle} \delta X
\end{aligned}
$$

Key differences with "strict" elementary doctrines

- Two weak products W, W^{\prime} of the same elements $X, Y \in \mathscr{C}$ are not necessarily isomorphic.
- The fibers $\mathrm{P}(W)$ and $\mathrm{P}\left(W^{\prime}\right)$ are not necessarily isomorphic.
- Given two arrows $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ the weak u.p. implies the existence of a not necessarily unique arrow $\langle f, g\rangle: Z \rightarrow W$. The reindexings $\mathrm{P}_{\langle f, g\rangle}$ and $\mathrm{P}_{\langle f, g\rangle^{\prime}}$ are not necessarily equal.
- We have only the inequality

$$
\delta_{X \times Y} \leq \delta_{X} \boxtimes \delta_{Y}
$$

Intuition: $x_{1}=x_{2}, y_{1}=y_{2} \Longrightarrow\left(\left(x_{1}, y_{1}\right), p\right)=\left(\left(x_{2}, y_{2}\right), q\right)$
$\delta_{X \times Y} \sim$ proof-relevant equality
$\delta_{X} \boxtimes \delta_{Y} \sim$ proof-irrelevant or component-wise equality

Definition

If W is a weak product of $X, Y \in \mathscr{C}$ the proof-irrelevant elements of W are the sub-poset of $\mathrm{P}(W)$ given by $\operatorname{Plrr}(W):=\operatorname{Des}_{\delta_{X} \boxtimes \delta_{Y}}$

- Different weak products have isomorphic proof-irrelevant elements: If W, W^{\prime} are weak products of $X, Y \in \mathscr{C}$ then there exists an arrow $W^{\prime} \xrightarrow{h} W$ s.t. $\mathrm{p}_{i} \circ h=\mathrm{p}^{\prime}{ }_{i}$

- Proof-irrelevant elements are reindexed by projections.
- Up to iso: we denote proof-irrelevant elements of X and Y with $\mathrm{P}^{s}[X, Y]$

Motivational example

- In $F_{/ A}^{M L}:$ Type $/ A^{o p} \rightarrow \operatorname{lnfSL}$, if

$$
\begin{aligned}
& W:=\sum_{x: X, y: Y} \operatorname{ld}_{A}(f(x), g(y)) \xrightarrow{\pi_{2}} Y \\
& \pi_{1} \downarrow \\
& X \xrightarrow{\downarrow} \xrightarrow{ } \\
& A
\end{aligned}
$$

$F_{/ A}^{M L} \operatorname{lrr}(W)=\{(x, y, p): W \vdash R(x, y, p) \mid$
$\left.\operatorname{ld}_{X}\left(x, x^{\prime}\right), \operatorname{Id}_{Y}\left(y, y^{\prime}\right), P(x, y, p) \vdash P\left(x^{\prime}, y^{\prime}, p^{\prime}\right)\right\}$.
Up to iso $\sim F^{M L}(X \times Y)$.

Strictification and quotient completion

If \mathscr{C} is a category, we can freely add strict finite products and obtain the category \mathscr{C}_{s} :

Obj. Finite lists $\left[X_{i}\right]_{i \in[n]}$
Arr. $(f, \hat{f}):\left[X_{i}\right]_{i \in[n]} \rightarrow\left[Y_{j}\right]_{j \in[m]}$

A P-eq. relation over $X \in \mathscr{C}$ is an element $\rho \in \mathrm{P}^{s}[X, X]$ satisfying ref., sym. and tra.

WED

Not left bi-adjoint to the forgetful 2-functor!

Main Theorems generalization

Theorem

If \mathscr{C} is wlex then $\overline{\mathrm{PSub}_{\mathscr{C}}} \cong \mathrm{Sub}_{\mathscr{C}_{e x}}: \mathscr{C}_{e x}^{o p} \rightarrow \operatorname{InfSL}$

Theorem

If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is a weak elementary doctrine with $\exists, \forall, \Longrightarrow$ and weak full comprehensions and comprehensive diagonals, then TFAE:
i) Every slice \mathscr{C} / A has extentional exponentials, ii) $\overline{\mathscr{C}}$ is locally cartesian closed.

Theorem

If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow$ Frm is a weak elementary doctrine with \exists and full weak comprehensions and comprehensive diagonals, then TFAE:
i) \mathscr{C} is weakly lextensive,
ii) $\overline{\mathscr{C}}$ is extensive.

References I

图 A．Carboni and G．Rosolini．
Locally cartesian closed exact completions．
Journal of Pure and Applied Algebra，154（1－3）：103－116， 2000.
㞘 J．Emmenegger．
On the local cartesian closure of exact completions． Journal of Pure and Applied Algebra，page 106414， 2020.

䍰 M．Gran and E．Vitale．
On the exact completion of the homotopy category． Cahiers de Topologie et Géométrie Différentielle Catégoriques， 39（4）：287－297， 1998.

國 M．Hofmann．
Extensional concepts in intensional type theory． 1995.

國 M．E．Maietti，F．Pasquali，and G．Rosolini．
Quasi－toposes as elementary quotient completions． Slides CT2017－UBC－Vancouver， 2017.

冨 M．E．Maietti and G．Rosolini．
Quotient completion for the foundation of constructive mathematics．
Logica Universalis，7（3）：371－402， 2013.
目 I．Moerdijk and E．Palmgren．
Wellfounded trees in categories．
Annals of Pure and Applied Logic，104（1－3）：189－218， 2000.

