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Setoids in Dependent type theory

De�nition

A setoid is a pair (X,R) where X is a closed type and R is a
dependent type x1, x2 ∶X ⊢ R(x1, x2) which is an equivalence
relation on X.

Intensional

IdA(a, b) /≡ a = b

Decidability of type check.

Strong normalization.

N-canonicity.

Extensional

IdA(a, b) ≡ a = b

Functional extensionality.

UIP.

Quotients.

Hofmann [4]: Ext.TT Int.TTSetoidModel



Homotopy setoids

h-level

0 is-contr(C) ∶= ∑
c∶C
∏
x∶C

IdA(c, x)

1 is-prop(P ) ∶= ∏
x,y∶P

IdP (x, y)

2 is-set(A) ∶= ∏
x,y∶A

is-prop(IdA(x, y))

n is-n+2-level(X) ∶= ∏
x,y∶X

is-n+1-level(IdX(x, y))

De�nition

An h-setoids (X,R) is a setoid in which the type X is an h-set and
the types R(x1, x2) are h-propositions.



Categorical perspective

OBJECTS
MAPS

Type

⊢X
x ∶X ⊢ f(x) ∶ Y

Std

(X,R)
⌊f⌉ ∶ (X,R)→ (Y,S)

h-Sets h-Std

Type Std
X→(X,IdX)

Facts

Std is the exact completion of the wlex category Type.

Std is a Π-pretopos [7].



What about h-setoids?

Desiderata:

(Local) cartesian closure

Extensivity

Well-behaved quotients of equivalence relations

Problem: Mismatch between "internal" and "external" notion of
equivalence relation

r1, r2 ∶ (X,R)→ (Y,S)

y1, y2 ∶ Y ⊢ ∑
x∶X

S(y1, r1(x)) × S(y2, r2(x)).

Conseguence: h-Std is not Barr exact.
Possible solution: Change framework → Elementary doctrines!



Elementary doctrines

P ∶ C op → InfSL

C has strict �nite products

For every X ∈ C there exists an element δX ∈ P (X ×X) with

P(Y ×X) P(Y ×X ×X)⊣

Equivalently:

⊺X ≤ P∆X
(δX)

P(X) = DesδX
δX ⊠ δY ≤ δX×Y

⊢ x = x
x1 = x2,A(x1) ⊢ A(x2)
x1 = x2, y1 = y2 ⊢ (x1, y1) = (x2, y2)



Main Examples I

1 If C is lex then
SubC ∶ C op → InfSL

SubC (X) ∶= {⌊m⌉ ∣m ∶M ↣X}
SubC (f) ∶= f∗
δX = ⌊∆X⌉

P M

Y X

f ′

m

f

f∗m
⌟

2 If C is qlex (= strict �nite products and weak pullbacks) then

PSubC ∶ C op → InfSL

PSubC (X) ∶= (C /X)po
PSubC (f) ∶= f∗
δX = ⌊∆X⌉



Main Examples II

3 FML ∶ Typeop → InfSL

FML(X) ∶= {x ∶X ⊢ B(x),up to logical equivalence}

x ∶X ⊢ B(x)↔ B′(x) true

if y ∶ Y ⊢ t(y) ∶X, then

FML(t)(B(x)) ∶= B(t(y)).

δX = IdX

4 T2,1 ∶ h-Setop Ð→ InfSL

T2,1(X) ∶= {x ∶X ⊢ B(x)∣ is-prop(B) true}

δX = IdX is an h-proposition



Equivalence relations and quotients

Let P be an elementary doctrine:

A P-eq. relation on X ∈ C is an element ρ ∈ P(X ×X) s.t.

δX ≤ ρ,
P⟨2,1⟩ρ ≤ ρ,

P⟨1,2⟩ρ ∧ P⟨2,3⟩ρ ≤ P⟨1,3⟩ρ,

⊢x x = x
ρ(x1, x2) ⊢x1,x2 ρ(x2, x1)

ρ(x1, x2), ρ(x2, x3) ⊢x̄ ρ(x1, x3))

A quotient of ρ is an arrow q ∶X → C s.t.

ρ ≤ Pq×qδC ρ(x1, x2) ⊢x1,x2 q(x1) = q(x2)

and for all g ∶X → Y s.t ρ ≤ Pq×qδY there exists a unique
arrow h

X C

Y

q

g
∃!h



Elementary quotient completion

P ∶ C op → InfSL

OBJECTS
MAPS

C
(X,ρ)

⌊f⌉ ∶ (X,ρ)→ (Y,σ)

P
P(X,ρ) ∶= Des⋆ρ

P⌊f⌉ ∶= Pf

⋆Desρ = {A(x) ∈ P(X)∣ρ(x1, x2),A(x1) ⊢x1,x2 A(x2)}

Theorem (Maietti-Rosolini [6])

ED QED

(−)

U

⊣



Main examples

1 If C is qlex then:

PSubC ∶ C op → InfSL PSubC ≅ SubCex ∶ C
op
ex → InfSL

Pseudo eq. relations

R X
r1

r2

←→ P-eq. relations
⌊< r1, r2 >∶ R →X ×X⌉

2 FML ∶ Typeop → InfSL FML ∶ Stdop → InfSL

3 T2,1 ∶ h-Setop Ð→ InfSL T2,1 ∶ h-Stdop → InfSL



Review of theorems about LCC and Extensivity

Theorem (Carboni-Rosolini [1],Emmenegger [2])

If C is a wlex and has right adjoint to weak pullback functors, then

TFAE:

i) Every slice C /A has extentional exponentials,

ii) Cex is locally cartesian closed.

Theorem (Gran-Vitale, [3])

If C is wlex with sums, then TFAE:

i) C is weakly lextensive,

ii) Cex is extensive.



LCC

Theorem

If P ∶ C op → InfSL is an elementary doctrine with ∃,∀, Ô⇒ and

weak full comprehensions and comprehensive diagonals, then TFAE:

i) Every slice C /A has extentional exponentials,

ii) C is locally cartesian closed.

Maietti-Pasquali-Rosolini, [5]. Slice-wise weakly cartesian
closed.

Ext. Exp. V ery weak exp.

Weak exp.



Extensivity

Theorem

If P ∶ C op → Frm is an elementary doctrine with ∃ and full weak

comprehensions and comprehensive diagonals, then TFAE:

i) C is weakly lextensive,

ii) C is extensive.

A +B vs. A ∨B:

- Assume + in the contexts Ô⇒ C with coproducts.

- Assume ∨ in the logic Ô⇒ P(X) ∈ Frm.

- De�ne a notion of weakly lextensive w.r.t. a doctrine.



Relative pretoposes

De�nition

A relative pretopos is an extensive category C equipped with an
elementary doctrine P in QED.

Example: Every pretopos C is relative to SubC .

Theorem

h-Std is a Π-pretopos relative to T2,1.

Current investigations:

h-Std as models of suitable type theories:
TTIQ, TTEQ, qmTT

Internal logic of h-Std
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Towards a generalization

Desiderata:

Generalization of the theorems about lcc and extensivity

A direct proof of the lcc

A framework to which contains the "slice" of a doctrine P/A
An internal description of pseudo equivalence relations for wlex

categories

Problems: Weak �nite products!



Weak �nite products

De�nition

A weak product of X,Y ∈ C is an object X
p1←W

p2→ Y such that

Z

X W Y

∃/!

p1 p2

f g

Examples:

In Set, given two sets X,Y then X × Y × {0,1} is a weak
product of X and Y .

In Type/A

∑
x∶X,y∶Y

IdA(f(x), g(y)) Y

X A.

π2

π1
g

f



Weak elementary doctrines

P ∶ C op → InfSL

C has weak �nite products

For every X ∈ C and weak product X
p1←W

p2→X there exists
an element δWX ∈ P(W ) s.t.

⊺Z ≤ Pd(δWX )
P(X) = DesδWX
δVY ≤ Pf×fδ

W
X

δWX ∈ DesδWX ⊠δWX

⊺X ≤ P∆X
(δX)

P(X) = DesδX
δX ⊠ δY ≤ δX×Y



Examples I

1 Every elementary doctrine P is a weak elementary doctrine. If

X
p1←W

p2→X is a weak product then there exists a unique
arrow < p1,p2 >∶W →X ×X

δWX ∶= P<p1,p2>δX

2 If C is wlex then the functor PSubC ∶ C op → InfSL is a weak
elementary doctrine and

δWX ∶= ⌊e⌉

where

E W X
e

p1

p2

is a weak equalizer of p1,p2.



Examples II

3 If P ∶ C op → InfSL is a (weak) elementary doctrine with weak
comprehensions and comprehensive diagonals and A ∈ C then
the slice doctrine is a weak elementary doctrine:

P/A ∶ C /Aop → InfSL

P/A(x ∶X → A) ∶= P(X)
P/A(f ∶ y → x) ∶= Pf

P/A(w) = P(X ×AX) and

δwx ∶= P<π1,π2>δX

X ×AX X

X ×X

X A

π2

xπ1

x

<π1,π2>

p1

p2



Key di�erences with "strict" elementary doctrines

Two weak products W,W ′ of the same elements X,Y ∈ C are
not necessarily isomorphic.

The �bers P(W ) and P(W ′) are not necessarily isomorphic.

Given two arrows f ∶ Z →X and g ∶ Z → Y the weak u.p.
implies the existence of a not necessarily unique arrow
< f, g >∶ Z →W . The reindexings P<f,g> and P<f,g>′ are not
necessarily equal.

We have only the inequality

δX×Y ≤ δX ⊠ δY

Intuition: x1 = x2, y1 = y2 /Ô⇒ ((x1, y1), p) = ((x2, y2), q)
δX×Y ∼ proof-relevant equality
δX ⊠ δY ∼ proof-irrelevant or component-wise equality



Proof-irrelevant elements

De�nition

If W is a weak product of X,Y ∈ C the proof-irrelevant elements
of W are the sub-poset of P(W ) given by PIrr(W ) ∶= DesδX⊠δY

Di�erent weak products have isomorphic proof-irrelevant
elements: If W,W ′ are weak products of X,Y ∈ C then there

exists an arrow W ′ W
h s.t. pi ○ h = p′i

PIrr(W ) PIrr(W ′)

P(W ) P(W ′)

≅

Ph

Proof-irrelevant elements are reindexed by projections.

Up to iso: we denote proof-irrelevant elements of X and Y
with Ps[X,Y ]



Motivational example

In FML
/A ∶ Type/Aop → InfSL, if

W ∶= ∑
x∶X,y∶Y

IdA(f(x), g(y)) Y

X A

π2

π1
g

f

FML
/A Irr(W ) = {(x, y, p) ∶W ⊢ R(x, y, p)∣

IdX(x,x′), IdY (y, y′), P (x, y, p) ⊢ P (x′, y′, p′)}.

Up to iso ∼ FML(X × Y ).



Stricti�cation and quotient completion

If C is a category, we can freely
add strict �nite products and
obtain the category Cs :

Obj. Finite lists [Xi]i∈[n]
Arr. (f, f̂) ∶ [Xi]i∈[n] → [Yj]j∈[m]

WED ED

(−)
s

U

⊣

A P-eq. relation over X ∈ C
is an element ρ ∈ Ps[X,X]
satisfying ref., sym. and tra.

WED QED
P→P

Not left bi-adjoint to the
forgetful 2-functor!

WED ED

QED

(−)
s

(−) (−)

/↻



Main Theorems generalization

Theorem

If C is wlex then PSubC ≅ SubCex ∶ C
op
ex → InfSL

Theorem

If P ∶ C op → InfSL is a weak elementary doctrine with ∃,∀, Ô⇒
and weak full comprehensions and comprehensive diagonals, then

TFAE:

i) Every slice C /A has extentional exponentials,

ii) C is locally cartesian closed.

Theorem

If P ∶ C op → Frm is a weak elementary doctrine with ∃ and full

weak comprehensions and comprehensive diagonals, then TFAE:

i) C is weakly lextensive,

ii) C is extensive.
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