Homotopy setoids and quotient completion

Cipriano Jr. Cioffo

UNIVERSITÀ DEGLI STUDI DI MILANO

2nd ItaCa workshop Università degli Studi di Genova, 20-21 December. .

1 Part 1

- (Homotopy) Setoids
- Elementary doctrines
- Relative pretoposes

2 Part 2

Definition

A setoid is a pair (X, R) where X is a closed type and R is a dependent type $x_1, x_2 : X \vdash R(x_1, x_2)$ which is an equivalence relation on X.

Intensional

 $\mathsf{Id}_A(a,b) \not\equiv a = b$

- Decidability of type check.
- Strong normalization.
- N-canonicity.

Extensional

$$\mathsf{Id}_A(a,b) \equiv a = b$$

- Functional extensionality.
- UIP.
- Quotients.

Hofmann [4]: Ext.TT $\subseteq \xrightarrow{SetoidModel}$ Int.TT

Homotopy setoids

h-level

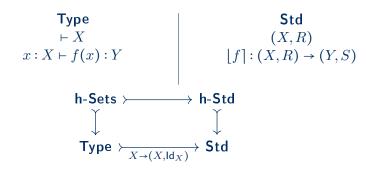
$$\begin{array}{l} 0 \quad \text{is-contr}(C) \coloneqq \sum\limits_{c:Cx:C} \prod \mathsf{Id}_A(c,x) \\ 1 \quad \text{is-prop}(P) \coloneqq \prod\limits_{x,y:P} \mathsf{Id}_P(x,y) \\ 2 \quad \text{is-set}(A) \coloneqq \prod\limits_{x,y:A} \text{is-prop}(\mathsf{Id}_A(x,y)) \\ n \quad \text{is-n+2-level}(X) \coloneqq \prod\limits_{x,y:X} \text{is-n+1-level}(\mathsf{Id}_X(x,y)) \end{array}$$

Definition

An *h-setoids* (X, R) is a setoid in which the type X is an h-set and the types $R(x_1, x_2)$ are h-propositions.

Categorical perspective

OBJECTS MAPS



Facts

- Std is the exact completion of the wlex category Type.
- Std is a Π -pretopos [7].

What about h-setoids?

Desiderata:

- (Local) cartesian closure
- Extensivity
- Well-behaved quotients of equivalence relations

Problem: Mismatch between "internal" and "external" notion of equivalence relation

$$r_1, r_2 : (X, R) \to (Y, S)$$

$$\downarrow$$

$$y_1, y_2 : Y \vdash \sum_{x:X} S(y_1, r_1(x)) \times S(y_2, r_2(x)).$$

Conseguence: **h-Std** is not Barr exact. Possible solution: Change framework → Elementary doctrines!

$\mathsf{P}: \mathscr{C}^{op} \to \mathsf{InfSL}$

- $\mathscr C$ has strict finite products
- For every $X \in \mathscr{C}$ there exists an element $\delta_X \in P(X \times X)$ with

$$\mathsf{P}(Y \times X) \xrightarrow{\bot} \mathsf{P}(Y \times X \times X)$$

Equivalently:

- $\mathsf{T}_X \leq \mathsf{P}_{\Delta_X}(\delta_X)$
- $\mathsf{P}(X) = \mathcal{D}es_{\delta_X}$
- $\delta_X \boxtimes \delta_Y \le \delta_{X \times Y}$

$$\vdash x = x$$

- $x_1 = x_2, A(x_1) \vdash A(x_2)$ $x_1 = x_2, u_1 = u_2 \vdash (x_1, u_1) = (x_2, u_2)$
- $x_1 = x_2, y_1 = y_2 \vdash (x_1, y_1) = (x_2, y_2)$

Main Examples I

● If C is lex then

 $\mathsf{Sub}_{\mathscr{C}}:\mathscr{C}^{op}\to\mathsf{InfSL}$

2 If \mathscr{C} is qlex (= strict finite products and weak pullbacks) then

 $\mathsf{PSub}_{\mathscr{C}}: \mathscr{C}^{op} \to \mathsf{InfSL}$

 $\begin{aligned} \mathsf{PSub}_{\mathscr{C}}(X) &\coloneqq (\mathscr{C}/X)_{po} \\ \mathsf{PSub}_{\mathscr{C}}(f) &\coloneqq f^* \\ \delta_X &= \lfloor \Delta_X \rceil \end{aligned}$

Main Examples II

 $I F^{ML} : Type^{op} \to InfSL$ $F^{ML}(X) \coloneqq \{x : X \vdash B(x), \text{up to logical equivalence}\}$ $x: X \vdash B(x) \leftrightarrow B'(x)$ true if $y: Y \vdash t(y): X$, then $F^{ML}(t)(B(x)) \coloneqq B(t(y)).$ $\delta_X = \mathsf{Id}_X$ **4** $\mathcal{T}_{2,1}$: **h**-**Set**^{op} \longrightarrow InfSL

 $\mathcal{T}_{2,1}(X) \coloneqq \{x : X \vdash B(x) | \text{ is-prop(B) true} \}$

 $\delta_X = \mathsf{Id}_X$ is an h-proposition

Equivalence relations and quotients

Let P be an elementary doctrine:

• A P-eq. relation on $X \in \mathscr{C}$ is an element $\rho \in \mathsf{P}(X \times X)$ s.t.

$$\begin{split} \delta_X &\leq \rho, & \vdash_x x = x \\ \mathsf{P}_{\langle 2,1 \rangle} \rho &\leq \rho, & \rho(x_1, x_2) \vdash_{x_1, x_2} \rho(x_2, x_1) \\ \mathsf{P}_{\langle 1,2 \rangle} \rho \wedge \mathsf{P}_{\langle 2,3 \rangle} \rho &\leq \mathsf{P}_{\langle 1,3 \rangle} \rho, & \rho(x_1, x_2), \rho(x_2, x_3) \vdash_{\bar{x}} \rho(x_1, x_3)) \end{split}$$

• A quotient of ρ is an arrow $q: X \to C$ s.t.

$$\rho \leq \mathsf{P}_{q \times q} \delta_C \qquad \qquad \rho(x_1, x_2) \vdash_{x_1, x_2} q(x_1) = q(x_2)$$

and for all $g:X \to Y$ s.t $\rho \leq \mathsf{P}_{q \times q} \delta_Y$ there exists a unique arrow h

$$X \xrightarrow{q} C$$

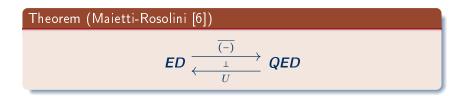
$$\downarrow \exists ! h$$

$$\downarrow f \exists ! h$$

Elementary quotient completion

 $\begin{tabular}{c} \hline \overline{\mathsf{P}}: \overline{\mathscr{C}}^{op} \rightarrow \mathsf{InfSL} \\ \hline \hline \\ \mathsf{OBJECTS} & (X,\rho) & \overline{\mathsf{P}}(X,\rho) \coloneqq \mathcal{Des}_{\rho}^{\star} \\ \mathsf{MAPS} & \lfloor f \rceil \colon (X,\rho) \rightarrow (Y,\sigma) & \overline{\mathsf{P}}\lfloor f \rceil \coloneqq \mathsf{P}_{f} \\ \hline \end{tabular}$

* $\mathcal{D}es_{\rho} = \{A(x) \in \mathsf{P}(X) | \rho(x_1, x_2), A(x_1) \vdash_{x_1, x_2} A(x_2)\}$



1 If \mathscr{C} is qlex then:

 $\mathsf{PSub}_{\mathscr{C}}:\mathscr{C}^{op}\to\mathsf{InfSL}\qquad\overline{\mathsf{PSub}_{\mathscr{C}}}\cong\mathsf{Sub}_{\mathscr{C}_{ex}}:\mathscr{C}_{ex}^{op}\to\mathsf{InfSL}$

Pseudo eq. relations $R \xrightarrow[r_2]{r_1} X \qquad \longleftrightarrow \qquad \begin{bmatrix} P - eq. relations \\ [< r_1, r_2 >: R \to X \times X \end{bmatrix}$

 $\ \ \, {} \bullet F^{ML}: \mathbf{Type}^{op} \to \mathsf{InfSL} \qquad \overline{F^{ML}}: \mathbf{Std}^{op} \to \mathsf{InfSL}$

Theorem (Carboni-Rosolini [1], Emmenegger [2])

If $\mathscr C$ is a wlex and has right adjoint to weak pullback functors, then TFAE:

i) Every slice \mathscr{C}/A has extentional exponentials,

ii) \mathscr{C}_{ex} is locally cartesian closed.

Theorem (Gran-Vitale, [3])

If C is wlex with sums, then TFAE: i) C is weakly lextensive, ii) C_{ex} is extensive.

Theorem

If $P : \mathscr{C}^{op} \to InfSL$ is an elementary doctrine with $\exists, \forall, \Longrightarrow$ and weak full comprehensions and comprehensive diagonals, then TFAE: i) Every slice \mathscr{C}/A has extentional exponentials, ii) $\overline{\mathscr{C}}$ is locally cartesian closed.

• Maietti-Pasquali-Rosolini, [5]. Slice-wise weakly cartesian closed.

Theorem

If $P : \mathscr{C}^{op} \to Frm$ is an elementary doctrine with \exists and full weak comprehensions and comprehensive diagonals, then TFAE: i) \mathscr{C} is weakly lextensive, ii) $\overline{\mathscr{C}}$ is extensive.

- A + B vs. $A \lor B$:
 - Assume + in the contexts $\implies \mathscr{C}$ with coproducts.
 - Assume \lor in the logic \implies $\mathsf{P}(X) \in \mathsf{Frm}$.
 - Define a notion of weakly lextensive w.r.t. a doctrine.

Definition

A *relative pretopos* is an extensive category \mathscr{C} equipped with an elementary doctrine P in **QED**.

Example: Every pretopos \mathscr{C} is relative to $\mathsf{Sub}_{\mathscr{C}}$.

Theorem

h-Std is a Π -pretopos relative to $\overline{\mathcal{T}_{2,1}}$.

Current investigations:

- h-Std as models of suitable type theories: TT_{IQ}, TT_{EQ}, qmTT
- Internal logic of h-Std

.

• Proof-irrelevant elements

Desiderata:

- Generalization of the theorems about lcc and extensivity
- A direct proof of the lcc
- $\bullet\,$ A framework to which contains the "slice" of a doctrine ${\sf P}/A$
- An internal description of *pseudo equivalence relations* for wlex categories

Problems: Weak finite products!

Weak finite products

Definition

A weak product of $X, Y \in \mathscr{C}$ is an object $X \stackrel{\mathsf{p}_1}{\leftarrow} W \stackrel{\mathsf{p}_2}{\rightarrow} Y$ such that

$$X \xleftarrow{f} \qquad \downarrow \exists y \qquad g \\ \downarrow \exists y \qquad g \\ \downarrow \exists y \qquad g \\ W \xrightarrow{g} Y$$

Examples:

- In **Set**, given two sets X, Y then $X \times Y \times \{0, 1\}$ is a weak product of X and Y.
- In Type/A

$\mathsf{P}: \mathscr{C}^{op} \to \mathsf{InfSL}$

- & has weak finite products
- For every $X \in \mathscr{C}$ and weak product $X \stackrel{\mathfrak{p}_1}{\leftarrow} W \stackrel{\mathfrak{p}_2}{\rightarrow} X$ there exists an element $\delta_X^W \in \mathsf{P}(W)$ s.t.
 - $\mathsf{T}_Z \leq \mathsf{P}_d(\delta_X^W)$
 - $\mathsf{P}(X) = \mathcal{D}es_{\delta_X^W}$
 - $\delta_Y^V \leq \mathsf{P}_{f \times f} \delta_X^W$
 - $\bullet \ \delta^W_X \in \mathcal{D}\!es_{\delta^W_X\boxtimes \delta^W_X}$

- $T_X \leq \mathsf{P}_{\Delta_X}(\delta_X)$
- $\mathsf{P}(X) = \mathcal{D}es_{\delta_X}$
- $\delta_X \boxtimes \delta_Y \le \delta_{X \times Y}$

Examples 1

Every elementary doctrine P is a weak elementary doctrine. If X ← W → X is a weak product then there exists a unique arrow < p₁, p₂ >: W → X × X

$$\delta_X^W \coloneqq \mathsf{P}_{<\mathsf{p}_1,\mathsf{p}_2>}\delta_X$$

② If *C* is wlex then the functor PSub_C : *C^{op}* → InfSL is a weak elementary doctrine and

$$\delta^W_X \coloneqq \lfloor e \rfloor$$

where

$$E \xrightarrow{e} W \xrightarrow{\mathsf{p}_1} X$$

is a weak equalizer of p_1, p_2 .

Examples II

If P : C^{op} → InfSL is a (weak) elementary doctrine with weak comprehensions and comprehensive diagonals and A ∈ C then the *slice doctrine* is a weak elementary doctrine:

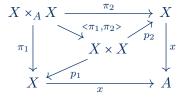
 $\mathsf{P}_{/A}: \mathscr{C}/A^{op} \to \mathsf{InfSL}$

$$P_{A}(x : X \to A) \coloneqq P(X)$$

$$P_{A}(f : y \to x) \coloneqq P_{f}$$

$$P_{A}(w) = P(X \times_{A} X) \text{ and}$$

$$\delta_{x}^{w} \coloneqq P_{<\pi_{1},\pi_{2}>}\delta_{X}$$



Key differences with "strict" elementary doctrines

- Two weak products W, W' of the same elements $X, Y \in \mathscr{C}$ are not necessarily isomorphic.
- The fibers P(W) and P(W') are not necessarily isomorphic.
- Given two arrows f: Z → X and g: Z → Y the weak u.p. implies the existence of a not necessarily unique arrow < f, g >: Z → W. The reindexings P_{<f,g>} and P_{<f,g>'} are not necessarily equal.
- We have only the inequality

$$\delta_{X \times Y} \le \delta_X \boxtimes \delta_Y$$

Intuition: $x_1 = x_2, y_1 = y_2 \implies ((x_1, y_1), p) = ((x_2, y_2), q)$ $\delta_{X \times Y} \sim proof-relevant$ equality $\delta_X \boxtimes \delta_Y \sim proof-irrelevant$ or component-wise equality

Definition

If W is a weak product of $X, Y \in \mathscr{C}$ the *proof-irrelevant* elements of W are the sub-poset of P(W) given by $PIrr(W) \coloneqq \mathcal{D}es_{\delta_X \boxtimes \delta_Y}$

Different weak products have isomorphic proof-irrelevant elements: If W, W' are weak products of X, Y ∈ C then there exists an arrow W' → W s.t. p_i ∘ h = p'_i

$$\begin{array}{c} \mathsf{PIrr}(W) \xrightarrow{\cong} \mathsf{PIrr}(W') \\ \downarrow & \downarrow \\ \mathsf{P}(W) \xrightarrow{} \mathsf{P}_{h} \mathsf{P}(W') \end{array}$$

- Proof-irrelevant elements are *reindexed by projections*.
- Up to iso: we denote proof-irrelevant elements of X and Y with $\mathsf{P}^s[X,Y]$

Motivational example

• In
$$F_{/A}^{ML}$$
 : Type/ $A^{op} \rightarrow$ InfSL, if

Strictification and quotient completion

If \mathscr{C} is a category, we can freely add strict finite products and obtain the category \mathscr{C}_s :

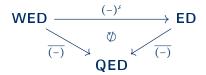
Obj. Finite lists $[X_i]_{i \in [n]}$ Arr. $(f, \hat{f}) : [X_i]_{i \in [n]} \rightarrow [Y_j]_{j \in [m]}$

WED $\xrightarrow[]{(-)^s}{\underset{U}{\longleftarrow}}$ ED

A P-eq. relation over $X \in \mathscr{C}$ is an element $\rho \in \mathsf{P}^{s}[X, X]$ satisfying ref., sym. and tra.

$$\mathsf{WED} \xrightarrow[P \to \overline{P}]{} \mathsf{QED}$$

Not left bi-adjoint to the forgetful 2-functor!



Main Theorems generalization

Theorem

If \mathscr{C} is wlex then $\overline{\mathsf{PSub}_{\mathscr{C}}} \cong \mathsf{Sub}_{\mathscr{C}_{ex}} : \mathscr{C}_{ex}^{op} \to \mathsf{InfSL}$

Theorem

If $P : \mathscr{C}^{op} \to \text{InfSL}$ is a weak elementary doctrine with $\exists, \forall, \Longrightarrow$ and weak full comprehensions and comprehensive diagonals, then TFAE:

i) Every slice \mathscr{C}/A has extentional exponentials,

ii) $\overline{\mathscr{C}}$ is locally cartesian closed.

Theorem

If $P : \mathscr{C}^{op} \to Frm$ is a weak elementary doctrine with \exists and full weak comprehensions and comprehensive diagonals, then TFAE: i) \mathscr{C} is weakly lextensive, ii) $\overline{\mathscr{C}}$ is extensive.

- A. Carboni and G. Rosolini.
 Locally cartesian closed exact completions.
 Journal of Pure and Applied Algebra, 154(1-3):103–116, 2000.
- J. Emmenegger. On the local cartesian closure of exact completions. Journal of Pure and Applied Algebra, page 106414, 2020.
- M. Gran and E. Vitale.
 On the exact completion of the homotopy category.
 Cahiers de Topologie et Géométrie Différentielle Catégoriques, 39(4):287–297, 1998.

Ì M. Hofmann.

Extensional concepts in intensional type theory. 1995.

M. E. Maietti, F. Pasquali, and G. Rosolini. Quasi-toposes as elementary quotient completions. Slides CT2017 - UBC - Vancouver, 2017.

M. E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive mathematics. Logica Universalis, 7(3):371–402, 2013.

I. Moerdijk and E. Palmgren.
 Wellfounded trees in categories.
 Annals of Pure and Applied Logic, 104(1-3):189–218, 2000.