Context, judgement, deduction

j.w.w. Ivan Di Liberti

$2^{\text {nd }}$ ItaCa Workshop

Greta Coraglia

$$
\begin{array}{rc}
\begin{aligned}
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
\text { (DTy) } \frac{\Gamma \vdash a: A \text { Term } \quad \Gamma . A \vdash B \text { Type }}{\Gamma \vdash B[a] \text { Type }} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \text { Form } x ; \Gamma, \phi \vdash \psi \text { Form }}{x ; \Gamma \vdash \psi \text { Form }}
\end{aligned}
\end{array}
$$

Why does this happen?
How do rules really work, syntactically? What about constructors/connectives?

Propositions as types

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}(C u t) \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

Propositions as types: it explains the similarities, it doesn't explain why these "shapes" in the syntax nor the difference between judgements involving different objects.
[...] so we have constructions acting on constructions.

- William Howard to Philip Wadler

Propositions as types

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

Propositions as types: it explains the similarities, it doesn't explain why these "shapes" in the syntax nor the difference between judgements involving different objects.
[...] so we have functors acting on functors.
-William Howard to Philip Wadter

An account of context, judgement, deduction

A pre-judgemental theory is specified through the following data:
context (ctx) a category (with terminal object \diamond);
judgement
(\mathcal{J}) judgement classifiers, a class of functors $f: \mathbb{F} \rightarrow$ ctx over the category of contexts;
deduction $\quad(\mathcal{R})$ rules, a class of functors $\lambda: \mathbb{F} \rightarrow \mathbb{G}$;
(C) cuts, a class of 2-dimensional cells filling (some) triangles induced by the rules (functors in \mathcal{R}) and the judgements (functors in \mathcal{J}).

\mathbb{F}	$\mathbb{F} \xrightarrow{\lambda} \xrightarrow{\mathbb{G}}$	
1	1	
f	f	
\checkmark	\checkmark	
ctx	ctx	
ctx		

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F^{\prime} \in f^{-1}(\Gamma)$ and $F=F^{\prime}$ we read $\Gamma \vdash F=\mathbb{F} F^{\prime}$.

$$
(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g \lambda F \vdash \lambda F \mathbb{G}}
$$

and, possibly, Γ and $g \lambda F$ and related by a map

$$
\lambda_{F}^{\#}: g \lambda F \rightarrow \Gamma
$$

Example: toy MLTT

$$
\dot{u}: \dot{U} \rightarrow c t x
$$

$$
u: \mathbb{U} \rightarrow \mathrm{ctx}
$$

$\Gamma \vdash(a, A) \dot{U} \quad a$ is a term of type A in context Γ
$\Gamma \vdash A \mathbb{U} \quad A$ is a type in context Γ

$$
(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}}
$$

the type of a in context Γ is a type in context Γ

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\mathrm{ctx}=\text { contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{C}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\dot{u}: \dot{U} \rightarrow c t x
$$

$\Gamma \vdash(a, A) \dot{U} \quad a$ is a term of type A in context Γ
$u: \mathbb{U} \rightarrow c t x$
$\Gamma \vdash A \mathbb{U}$
A is a type in context Γ

(Σ) $\frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}}$
the type of a in context Γ is a type in context Γ

Judgemental theories

This is nice and all, but we can't do anything with it.
We express the computational power of a deductive system into 2-categorical constructions.

A judgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{C}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{C} are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. \mathcal{R} and \mathcal{C} are closed under finite limits, \#-liftings, whiskering and pasting.

$$
\cdot \frac{\square>}{\stackrel{r}{4}}
$$

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & \text { Г.AトВ } \\
x ;\ulcorner\vdash \phi & x ; Г, \phi \vdash \psi
\end{array}
$$

because

「トF $\boldsymbol{F} \cdot \mathrm{H} \mathbb{F} \lambda . \mathbb{H}$
really is

$$
\Gamma \vdash H \mathbb{H} \quad g \lambda H \vdash F \mathbb{F}
$$

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\text { Гトa:A } & \text { Г.АトВ } \\
x ;\ulcorner\vdash \phi & x ; \Gamma, \phi \vdash \psi
\end{array}
$$

because

「トF $\boldsymbol{F} \cdot \mathrm{H} \mathbb{F} \lambda . \mathbb{H}$
really is

$$
\Gamma \vdash H \mathbb{H} \quad g \lambda H \vdash F \mathbb{F}
$$

Example: toy MLTT

toy MLTT: ctx, $\mathcal{J}=\{\dot{u}, u\}, \mathcal{R}=\{\Sigma\}, \mathcal{C}=\{i d: u \circ \Sigma \Rightarrow \dot{u}\}$
In the judgemental theory generated by (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{C})$ we find the following:

reads as $\quad(\sigma) \frac{\Gamma \vdash(a,(A, B)) E q \sum \cdot \operatorname{Pr}_{1} \dot{U}}{\Gamma \vdash \sigma(a,(A, B)) \dot{U}}$

Example: toy MLTT

toy MLTT: ctx, $\mathcal{J}=\{\dot{u}, u\}, \mathcal{R}=\{\Sigma\}, \mathcal{C}=\{i d: u \circ \Sigma \Rightarrow \dot{u}\}$
In the judgemental theory generated by (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{C})$ we find the following:

jDTT, I: definition

DTT: $\left\{\begin{array}{l}\text { ctx }=\text { contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\}, \text { with } u, \dot{u} \text { fibrations } \\ \mathcal{R}=\{\Sigma, \Delta\}, \text { with } \Sigma \dashv \Delta \\ \mathcal{C}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}, \epsilon, \eta\}, \text { with } \epsilon, \eta \text { cartesian }\end{array}\right.$

jDTT, I: definition

$$
\text { DTT: } \quad\left\{\begin{array}{l}
\text { ctx }=\text { contexts and substitutions } \\
\mathcal{J}=\{\dot{u}, u\}, \text { with } u, \dot{u} \text { fibrations } \\
\mathcal{R}=\{\Sigma, \Delta\}, \text { with } \Sigma \dashv \Delta \\
\mathcal{C}=\{i d: u \circ \Sigma \Rightarrow \dot{u}, \epsilon, \eta\}, \text { with } \epsilon, \eta \text { cartesian }
\end{array}\right.
$$

Theorem (1)

If \dot{u}, u are discrete fibrations, the judgmental theory generated by DTT is equivalent to a natural model* à la Awodey.

Theorem (2)

The judgmental theory generated by DTT contains codes for all rules of dependent type theory.

jDTT, II: coding dependent families

jDTT, II: coding dependent families

$$
\begin{aligned}
\Gamma \vdash a: A & \Gamma . A \vdash b: B \\
\Gamma \vdash A & \Gamma . A \vdash b: B \\
\Gamma \vdash a: A & \Gamma . A \vdash B \\
\Gamma \vdash A & \Gamma . A \vdash B
\end{aligned}
$$

jDTT，III：type dependency as cuts

$$
\frac{\text { Г.Aト }(a, b) \dot{U} . \Sigma \Delta \dot{U}}{\text { 「ト?? } \dot{U}}
$$

$$
\begin{gathered}
\Gamma . A \vdash(a, B) \dot{\mathbb{U}} . \Sigma \Delta \mathbb{U} \\
\Gamma \vdash ? ? \mathbb{U} \\
? ? \rightarrow B \\
\Gamma \rightarrow \Gamma . A
\end{gathered}
$$

jDTT, III: type dependency as cuts

$$
(\mathrm{DTm}) \frac{\Gamma \vdash a: A \quad \Gamma \cdot A \vdash b: B}{\Gamma \vdash b[a]: B[a]}
$$

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}
$$

$$
B[a] \rightarrow B
$$

$$
Г \rightarrow Г . А
$$

jDTT, IV: type constructors

Plus, we can define what diagrams one needs to add to DTT in order to get type constructors.

Theorem (3)

It has Π-types if it has two additional rules Π, λ such that the diagram below is commutative and the upper square is a pullback.

$$
\begin{aligned}
& \text { (Пו) } \frac{\Gamma \vdash A \quad \Gamma . A \vdash b: B}{\Gamma \vdash \lambda_{A} b: \Pi_{A} B} \\
& \text { (ПF) } \frac{\Gamma \vdash A \quad \Gamma . A \vdash B}{\Gamma \vdash \Pi_{A} B}
\end{aligned}
$$

$(\sqcap \mathrm{E})$: the unique map induced by the pullback from the classifier of (A, B, f, a)
(ПС) η and β : the two related isomorphisms

jDTT, IV: type constructors

Theorem (4)

It has extensional Id-types if it has two additional rules Id, i s.t. the diagram below is commutative and the upper square is a pullback.

Theorem (5)

It has dependent sum types if it has two additional rules sum, pair s.t. the diagram below is commutative and the upper square is a pullback.

It is clear how one can generalizes this and the calculations can be made once for all constructors of this kind.

In summation

We describe a general theory of judgement via 2-categorical means and prove its coherence with respect to:

- DTT, and get a (first) general definition of type constructor in the process;
- natural deduction calculus;
- internal logic of a topos.

Still, there are plenty of things that should be looked into, for example:

- prove some completeness result;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- study monads as modalities;
- express new logics (modal? linear?) in this framework.

Thank you for listening! Questions?

(i)

Università
di Genova

