
DIMA DIPARTIMENTO
DI MATEMATICA

Context, judgement, deduction
j.w.w. Ivan Di Liberti

2nd ItaCa Workshop

Greta Coraglia



2/23

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

Why does this happen?
How do rules really work, syntactically?
What about constructors/connectives?



3/23

Propositions as types

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Propositions as types: it explains the similarities, it doesn’t explain why these
“shapes” in the syntax nor the di�erence between judgements involving
di�erent objects.

[...] so we have constructions acting on constructions.
- William Howard to Philip Wadler



4/23

Propositions as types

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Propositions as types: it explains the similarities, it doesn’t explain why these
“shapes” in the syntax nor the di�erence between judgements involving
di�erent objects.

[...] so we have functors acting on functors.
- William Howard to Philip Wadler



5/23

An account of context, judgement, deduction
A pre-judgemental theory is speci�ed through the following data:

context (ctx) a category (with terminal object �);

judgement (J ) judgement classi�ers, a class of functors f : F → ctx over the
category of contexts;

deduction (R) rules, a class of functors λ : F→ G;
(C) cuts, a class of 2-dimensional cells �lling (some) triangles induced
by the rules (functors in R) and the judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/23

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



7/23

Example: toy MLTT

toy MLTT:



















ctx = contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
C = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



8/23

Example: toy MLTT

toy MLTT:



















ctx = contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
C = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

id Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/23

Judgemental theories
This is nice and all, but we can’t do anything with it.

We express the computational power of a deductive system
into 2-categorical constructions.

A judgemental theory (ctx,J ,R, C) is a pre-judgemental theory such that
1. R and C are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and C are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð



10/23

Nested judgements

Pullbacks compute nested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



11/23

Nested judgements

Pullbacks compute nested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



12/23

Example: toy MLTT

toy MLTT: ctx, J = {u̇,u}, R = {Σ}, C = {id : u ◦Σ⇒ u̇}

In the judgemental theory generated by (ctx,J ,R, C) we �nd the following:

Eq(pr1,pr2) U̇× U̇ U̇

U̇

pr1

pr2

diag
reads as Γ ` (a,A) U̇

(ρ)
Γ ` ρ(a,A) Eq(pr1,pr2)

EqΣ.Pr2U̇

EqΣ.Pr1U̇ U̇

Eq(Pr1,Pr2) U× U U
Pr1

Pr2

Σ

∼

reads as Γ ` (a, (A,B)) EqΣ.Pr1U̇(σ)
Γ ` σ(a, (A,B)) U̇



13/23

Example: toy MLTT

toy MLTT: ctx, J = {u̇,u}, R = {Σ}, C = {id : u ◦Σ⇒ u̇}

In the judgemental theory generated by (ctx,J ,R, C) we �nd the following:

Eq(pr1,pr2) U̇× U̇ U̇

U̇

pr1

pr2

diag
reads as Γ ` a : A(ρ)

Γ ` a =A a

EqΣ.Pr2U̇

EqΣ.Pr1U̇ U̇

Eq(Pr1,Pr2) U× U U
Pr1

Pr2

Σ

∼

reads as Γ ` a : A Γ ` A = B(σ)
Γ ` a : B



14/23

jDTT, I: definition

DTT:



















ctx = contexts and substitutions
J = {u̇,u}, with u, u̇ �brations
R = {Σ,∆}, with Σ a ∆

C = {id : u ◦Σ⇒ u̇, ε, η}, with ε, η cartesian

U U̇

ctx

∆

u u̇
u∗ε Γ ` A U

u̇∆A ` ∆A U̇
Γ ` A

Γ.A ` qA : AδA



15/23

jDTT, I: definition

DTT:



















ctx = contexts and substitutions
J = {u̇,u}, with u, u̇ �brations
R = {Σ,∆}, with Σ a ∆

C = {id : u ◦Σ⇒ u̇, ε, η}, with ε, η cartesian

Theorem (1)
If u̇,u are discrete �brations, the judgmental theory generated by DTT is
equivalent to a natural model* à la Awodey.

Theorem (2)
The judgmental theory generated by DTT contains codes for all rules of
dependent type theory.

*hence categories with families, attributes, etc



16/23

jDTT, II: coding dependent families

Γ ` a : A Γ.A ` b : B
Γ ` A Γ.A ` b : B

Γ ` a : A Γ.A ` B
Γ ` A Γ.A ` B

U̇.Σ∆U̇ U.∆U̇ U̇

U̇.Σ∆U U.∆U U

U̇ U U̇ ctx
∆ u̇

u

Σ

Σ

ðð

ð ð

a : A A qA : AδA Γ.A



17/23

jDTT, II: coding dependent families

Γ ` a : A Γ.A ` b : B
Γ ` A Γ.A ` b : B

Γ ` a : A Γ.A ` B
Γ ` A Γ.A ` B

U̇.Σ∆U̇ U.∆U̇ U̇

U̇.Σ∆U U.∆U U

U̇ U U̇ ctx
∆ u̇

u

Σ

Σ

ðð

ð ð

a : A A qA : AδA Γ.A



18/23

jDTT, III: type dependency as cuts

U̇× U̇

U̇.Σ∆U̇ U̇

U̇× U

U̇.Σ∆U U

U̇

U̇ ctx

π

u∗id
π

id

u̇∆Σ

u̇

u

Σ

π

π
u̇∗id

u∗η′

η′

u̇∗η′

Γ.A ` (a,b) U̇.Σ∆U̇

Γ ` ?? U̇
??→ b

Γ.A ` (a,B) U̇.Σ∆U

Γ ` ?? U
??→ B

Γ→ Γ.A



19/23

jDTT, III: type dependency as cuts

U̇× U̇

U̇.Σ∆U̇ U̇

U̇× U

U̇.Σ∆U U

U̇

U̇ ctx

π

u∗id
π

id

u̇∆Σ

u̇

u

Σ

π

π
u̇∗id

u∗η′

η′

u̇∗η′
Γ ` a : A Γ.A ` b : B(DTm)

Γ ` b[a] : B[a]

b[a]→ b

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

B[a]→ B

Γ→ Γ.A



20/23

jDTT, IV: type constructors

Plus, we can de�ne what diagrams one needs to add to DTT in order to get type
constructors.

Theorem (3)
It has Π-types if it has two additional rules Π, λ such that the diagram below is
commutative and the upper square is a pullback.

U.∆U̇ U̇

U.∆U U

ctx

Σ.(u̇∆.u)

λ

Π

Σ

v

Γ ` A Γ.A ` b : B(ΠI)
Γ ` λAb : ΠAB

Γ ` A Γ.A ` B(ΠF)
Γ ` ΠAB

(ΠE): the unique map induced by the pullback from the classi�er of (A,B, f ,a)
(ΠC) η and β: the two related isomorphisms



21/23

jDTT, IV: type constructors

Theorem (4)
It has extensional Id-types if it has
two additional rules Id, i s.t. the
diagram below is commutative and
the upper square is a pullback.

U̇ U̇

U̇× U̇ U

ctx

Σ

Id

diag

i

Theorem (5)
It has dependent sum types if it has
two additional rules sum, pair s.t.
the diagram below is commutative
and the upper square is a pullback.

(U̇.Σ∆U)Σ.γU̇ U̇

U.∆U U

ctx

Σ

sum

Σ.(u.u̇∆)◦Σ.γ

pair

It is clear how one can generalizes this and the calculations can be made once
for all constructors of this kind.



22/23

In summation

We describe a general theory of judgement via 2-categorical means and prove
its coherence with respect to:
É DTT, and get a (�rst) general de�nition of type constructor in the process;
É natural deduction calculus;
É internal logic of a topos.

Still, there are plenty of things that should be looked into, for example:
É prove some completeness result;
É extend the theory and the de�nition to type constructors not included

(inductive, coinductive);
É study monads as modalities;
É express new logics (modal? linear?) in this framework.

Thank you for listening! Questions?




