

Context, judgement, deduction

2nd ItaCa Workshop

Greta Coraglia

$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \text{ Term } \qquad \Gamma.A \vdash B \text{ Type}}{\Gamma \vdash B[a] \text{ Type}} \qquad (Cut) \frac{x; \Gamma \vdash \phi \text{ Form } x; \Gamma, \phi \vdash \psi \text{ Form}}{x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash \psi \text{ Form } x; \Gamma \vdash \psi \text{ Form } x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash \psi \vdash \psi \text{ Form } x; \Psi \vdash \psi \vdash \psi \text{ Form } x; \Psi \vdash \psi \vdash \psi \text{ For$$

Why does this happen? How do rules *really* work, syntactically? What about constructors/connectives?

Propositions as types

$$(\mathsf{DTy}) \frac{\Gamma \vdash a : A \quad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \quad (\mathsf{Cut}) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

Propositions as types: it explains the similarities, it doesn't explain *why* these "shapes" in the syntax nor the difference between judgements involving different objects.

[...] so we have constructions acting on constructions.

- William Howard to Philip Wadler

Propositions as types

$$(\mathsf{DTy}) \frac{\Gamma \vdash a : A \quad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \quad (\mathsf{Cut}) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

Propositions as types: it explains the similarities, it doesn't explain *why* these "shapes" in the syntax nor the difference between judgements involving different objects.

[...] so we have functors acting on functors.

- William Howard to Philip Wadler

An account of context, judgement, deduction

A *pre-judgemental theory* is specified through the following data:

context (ctx) a category (with terminal object \$);

judgement (\mathcal{J}) *judgement classifiers*, a class of functors $f : \mathbb{F} \to \text{ctx over the category of contexts;}$

deduction (\mathcal{R}) *rules*, a class of functors $\lambda : \mathbb{F} \to \mathbb{G}$;

(C) cuts, a class of 2-dimensional cells filling (some) triangles induced by the rules (functors in \mathcal{R}) and the judgements (functors in \mathcal{J}).

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F' \in f^{-1}(\Gamma)$ and F = F' we read $\Gamma \vdash F =_{\mathbb{F}} F'$.

$$(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g\lambda F \vdash \lambda F \mathbb{G}}$$

and, possibly, Γ and $g\lambda F$ and related by a map

$$\lambda_F^{\sharp}: g\lambda F \to \Gamma$$

Example: toy MLTT

toy MLTT:	$\begin{cases} ctx = contexts \text{ and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$	
$\dot{u}:\dot{U}\rightarrow ctx$	Γ⊢(<i>a</i> , A) Ū́	a is a term of type A in context Γ
$u: \mathbb{U} \rightarrow \mathrm{ctx}$	$\Gamma \vdash A \mathbb{U}$	A is a type in context Γ
$\xrightarrow{\Sigma} \mathbb{U}$ $\xrightarrow{i}{\searrow} \mathcal{K}^{u}$ ctx^{u}	(Σ) <u>Γ⊢(a, A) Ū</u> Γ⊢A U	the type of <i>a</i> in context Γ is a type in context Γ

Ů

Example: toy MLTT

toy MLTT:	$\begin{cases} ctx = contexts \text{ and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$	
$\dot{u}:\dot{U}\rightarrow ctx$	Γ⊢(<i>a,</i> A) ∪́	a is a term of type A in context Γ
$u:\mathbb{U}\to \mathrm{ctx}$	Г⊢А∪	A is a type in context Γ
$\dot{\mathbb{U}} \xrightarrow{\Sigma} \mathbb{U}$	(Σ) <u>Γ⊢(a, A) Ū</u> Γ⊢A U	the type of <i>a</i> in context Γ is a type in context Γ

Judgemental theories

This is nice and all, but we can't do anything with it.

We express the computational power of a deductive system into 2-categorical constructions.

A judgemental theory (ctx, \mathcal{J} , \mathcal{R} , \mathcal{C}) is a pre-judgemental theory such that

- 1. ${\mathcal R} \text{ and } {\mathcal C}$ are closed under composition;
- 2. the judgements are precisely those rules whose codomain is ctx;
- 3. \mathcal{R} and \mathcal{C} are closed under finite limits, #-liftings, whiskering and pasting.

Nested judgements

Pullbacks compute nested judgements such as

because

 $\Gamma \vdash F\lambda.H \mathbb{F}\lambda.\mathbb{H}$

really is

 $\Gamma \vdash H \blacksquare g \lambda H \vdash F \Bbb F$

Nested judgements

Pullbacks compute nested judgements such as

 $\Gamma \vdash F\lambda.H \mathbb{F}\lambda.\mathbb{H}$

really is

 $\Gamma \vdash H \blacksquare g \lambda H \vdash F \blacksquare$

Example: toy MLTT

toy MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}, \mathcal{R} = \{\Sigma\}, \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$$

In the judgemental theory generated by $(\mathsf{ctx}, \mathcal{J}, \mathcal{R}, \mathcal{C})$ we find the following:

Example: toy MLTT

toy MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}, \mathcal{R} = \{\Sigma\}, \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$$

In the judgemental theory generated by $(\mathsf{ctx}, \mathcal{J}, \mathcal{R}, \mathcal{C})$ we find the following:

jDTT, I: definition

DTT:
$$\begin{cases} \operatorname{ctx} = \operatorname{contexts} \text{ and substitutions} \\ \mathcal{J} = \{\dot{u}, u\}, \text{ with } u, \dot{u} \text{ fibrations} \\ \mathcal{R} = \{\Sigma, \Delta\}, \text{ with } \Sigma \dashv \Delta \\ \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}, \epsilon, \eta\}, \text{ with } \epsilon, \eta \text{ cartesian} \end{cases}$$

jDTT, I: definition

DTT:
$$\begin{cases} \operatorname{ctx} = \operatorname{contexts} \text{ and substitutions} \\ \mathcal{J} = \{\dot{u}, u\}, \text{ with } u, \dot{u} \text{ fibrations} \\ \mathcal{R} = \{\Sigma, \Delta\}, \text{ with } \Sigma \dashv \Delta \\ \mathcal{C} = \{id : u \circ \Sigma \Rightarrow \dot{u}, \epsilon, \eta\}, \text{ with } \epsilon, \eta \text{ cartesian} \end{cases}$$

Theorem (1)

If \dot{u} , u are discrete fibrations, the judgmental theory generated by DTT is equivalent to a natural model* à la Awodey.

Theorem (2)

The judgmental theory generated by DTT contains codes for all rules of dependent type theory.

*hence categories with families, attributes, etc

jDTT, II: coding dependent families

$$\begin{split} \ddot{\cup}.\Sigma\Delta\dot{\cup} \longrightarrow U.\Delta\dot{\cup} \longrightarrow \dot{\cup}.\dot{\Delta}\dot{\cup} \longrightarrow \dot{\cup}.\dot{\Box} & \dot{\Box} & \dot{$$

jDTT, II: coding dependent families

 $i \downarrow \Sigma \Delta i \downarrow \longrightarrow [\downarrow, \Delta i \downarrow]$ ____ Ū́J $\Gamma \vdash a : A \quad \Gamma : A \vdash b : B$ $\Gamma \vdash A \quad \Gamma \land A \vdash b : B$ $\bigcup, \Sigma \Delta \bigcup \longrightarrow \bigcup, \Delta \bigcup$ $\Gamma \vdash a : A \quad \Gamma : A \vdash B$ $\Gamma \vdash A \quad \Gamma . A \vdash B$ $\xrightarrow{} \mathbb{U} \xrightarrow{} \dot{\mathbb{U}} \xrightarrow{} \mathsf{ctx}$ $a: A \longmapsto A \longmapsto q_A: A \delta_A \longmapsto \Gamma.A$

Σ

U U

jDTT, III: type dependency as cuts

jDTT, III: type dependency as cuts

Tm)
$$\frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash b : B}{\Gamma \vdash b[a] : B[a]}$$
$$b[a] \rightarrow b$$

$$(DTy) \xrightarrow{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$
$$B[a] \rightarrow B$$

 $\Gamma \to \Gamma.A$

jDTT, IV: type constructors

Plus, we can define what diagrams one needs to add to DTT in order to get type constructors.

Theorem (3)

It has Π -types if it has two additional rules Π , λ such that the diagram below is commutative and the upper square is a pullback.

(Π E): the unique map induced by the pullback from the classifier of (A, B, f, a) (Π C) η and β : the two related isomorphisms

jDTT, IV: type constructors

Theorem (4)

It has *extensional* Id*-types* if it has two additional rules Id, i s.t. the diagram below is commutative and the upper square is a pullback.

$\dot{\mathbb{U}} \xrightarrow{i} \xrightarrow{i} \dot{\mathbb{U}}$ $diag \downarrow \qquad \qquad \downarrow_{\Sigma}$ $\dot{\mathbb{U}} \times \dot{\mathbb{U}} \xrightarrow{Id} \xrightarrow{U}$ ctx

Theorem (5)

It has *dependent sum types* if it has two additional rules sum, pair s.t. the diagram below is commutative and the upper square is a pullback.

It is clear how one can generalizes this *and* the calculations can be made once for all constructors of this kind.

In summation

We describe a **general theory of judgement** via 2-categorical means and prove its coherence with respect to:

- > DTT, and get a (first) general definition of type constructor in the process;
- natural deduction calculus;
- internal logic of a topos.

Still, there are plenty of things that should be looked into, for example:

- prove some completeness result;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- study monads as modalities;
- express new logics (modal? linear?) in this framework.

Thank you for listening! Questions?

Università di **Genova**