DIMA DIPARTIMENTO

@ Universita
DI MATEMATICA

di Genova

Context, judgement, deduction

j-w.w. Ivan Di Liberti

279 1taCa Workshop

Greta Coraglia



e r.A-B Xk xr,oFy
= (Cut) XTFU

(DTy)

r'Fa:A T.AFB
(DTY) [+ B[q]

x;r'-¢ x;r,oFy
Ty

(Cut)

Fa:ATerm Al BType
I+ Bla] Type

x;'F ¢ Form x;[, ¢ - ¢ Form

(DTy) x; '+ ¢ Form

(Cut)

Why does this happen?
How do rules really work, syntactically?
What about constructors/connectives?

Universita



Propositions as types

rFa:A rA-B x;'k¢ xTokyY

(DTy) rF Bq] (Cut) XTFU

Propositions as types: it explains the similarities, it doesn’t explain why these
“shapes” in the syntax nor the difference between judgements involving
different objects.

[...] so we have constructions acting on constructions.
- William Howard to Philip Wadler



Propositions as types

lra:A rAFB (Cut) x;,T'k¢ x;r, oy
[+ B[a] h XTEy

(DTy)

Propositions as types: it explains the similarities, it doesn’t explain why these
“shapes” in the syntax nor the difference between judgements involving
different objects.

[...] so we have functors acting on functors.

: ¢ to-Phili .y

Universita



An account of context, judgement, deduction

A pre-judgemental theory is specified through the following data:
context  (ctx) a category (with terminal object ¢);

(J) judgement classifiers, a class of functors f : F — ctx over the

Judgement category of contexts;

(R) rules, a class of functors A : F — G;

deduction (C) cuts, a class of 2-dimensional cells filling (some) triangles induced
by the rules (functors in R) and the judgements (functors in 7).
A A A
F F—— G F > G F > G
1 1 | 4 = —
f f g Ny SN TS \&A /
v v g N ¥ P T
ctx ctx ctx ctx H

Universita



Categories as syntax

A A
F F—> G F > G
1 I | \ & A# ¢/
f f g f
v ~ ~ N e
ctx ctx ctx ctx

Whenever Fe f~'(M we read I F F .

Whenever F, F/ € f~'(I) and F = F' weread I' - F = F’.

[EFF
) GAFFAFG

and, possibly, I and gAF and related by a map

AL gAF =T

Universita



toy MLTT:

U:U — ctx

u:U — ctx

Example: toy MLTT

ctx = contexts and substitutions

J={u,u}

R={X}, withX:(a,A)—A
C=A{id:uoX=u}

Me(a,A)U

()

r’FAU

Mk(a,A)U

rFAU

aisaterm oftype Ain context I

Ais atypein context

the type of a in context I' is a
type in context I



Example: toy MLTT

ctx = contexts and substitutions
J=A{u,u}

toy MLTT: .
y R—{X}, with ¥ : (a,A) — A
C=A{id:uoX=u}
0:U— ctx M+ (a,A)U aisaterm of type Ain context I
u:U— ctx r’FAU Ais atypein context I
x U

N —id = +(a,A)U  the type of a in context I'is a

oL ) AU type in context I



Judgemental theories
This is nice and all, but we can’t do anything with it.

We express the computational power of a deductive system
into 2-categorical constructions.

A judgemental theory (ctx, 7, R, C) is a pre-judgemental theory such that

1. R and C are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and C are closed under finite limits, #-liftings, whiskering and pasting.

@ ———————= > e

| }\ A

| . Lo

I o7 >
e -——-3 e i . fib o —>
] A
~ ~ ! !
e —> o .———«)o:;o e — L s e e —> o U °



Nested judgements
Pullbacks compute nested judgements such as
NlN-a:A rNAFB

x,T'k¢ xr,okFyY

because
® - -~
\ ek el MFFAHFA.H
\\ > \\$
\\ [F)\.[]—[l ....... fg)\ ..... ) [H] really is
\ r A
F : F’FHH  gAHFFF
\\ gA.f G
N
\ : g

..........



Nested judgements
Pullbacks compute nested judgements such as
NlN-a:A rAFB

x,T'k¢ xr,okFy

because
® - -~
\ ek el MFFA.HFA.H
\\ > \\$
\\ [F)\.[]—[l ....... fg)\ ..... ) [H] really is
\ r A
F : FT’FHH  gAHFFF
\\ gA.f G
N
\ : g



Example: toy MLTT

toy MLTT: ctx, j: {U, u}’ R = {Z}, C = {Idu02:>u}

In the judgemental theory generated by (ctx, J, R, C) we find the following:

pra

Eq(pry, pr2) — Ux U j U

prs M (a,A) U

T reads as (0)
: diag [+ p(a, A) Eq(pr, pr2)
U
Eq=.Pr,U
/ \ [+ (a, (A B)) EqT.Pr,U
EqE.PrUJ L readsas (o) (% (A B)) Eqx.Pr

! rFo(a, (A B)U
pN
Eq(Pry, Pr;) — Ux U :; U )

Universita



Example: toy MLTT

toy MLTT: ctx, 7 ={u,u}, R={X}, C={id:uoX =0}

In the judgemental theory generated by (ctx, J, R, C) we find the following:

Eq(pr:, pr,) — Ux U ﬁ U

pra NlNa:A
T : reads as (0) Thazsa
' iag
U
Eqx.Pr,U
/ \ Fa:A THFA=B
Eqx.Pr,U > U readsas (o) Nl-a:B

l 1

Eq(Prs, Pr) —— Ux U : U %

Universita



JDTT, I: definition

ctx = contexts and substitutions
J =A{u,u}, with u, u fibrations

DTT: .
R=A{X, A}, withz4A
C={id:uoX=u,¢€,n}, with €, n cartesian
A -
U > U
N %u*e%/ H'—A[U rEA
N UAAFAAU  T.AFqga:Ada
ctx



JDTT, I: definition

ctx = contexts and substitutions

J = {u, u}, with u, u fibrations

R=A{%, A}, withz4A
C={id:uoX=u,¢€,n}, with €, n cartesian

DTT:

Theorem (1)

If U, u are discrete fibrations, the judgmental theory generated by DTT is
equivalent to a natural model* a la Awodey.

Theorem (2)

The judgmental theory generated by DTT contains codes for all rules of
dependent type theory.

..........



JDTT, II: coding dependent families

U.YAU — U.AU s U

Fa:A T.AFb:B i l >
A T.LAFb:B U.YAU — U.AU s U
FFa:A T.AFB l l ’ .
FFA T.AFB 0 U — . [  atx

A:Ar—— A+—— qa:Abp —— T.A

Universita



N-a:A
rFA
N-a:A
rFA

JDTT, II: coding dependent families

c-

U.xAU — U.AU

rAkb:B i l >
rAkb:B U.YAU — U.AU
rAFB l l ' J

rAFB U——— U —— U —

-

0O
—

X

A:Ar—— Ar+—— qa:Abp —— T.A

........



C.

C.

JDTT, III: type dependency as cuts

u*id |
/ : u*n’ T[\

AU L s U
l I
[ ~
|
A [U\ :
| u*i {
\:’ / i U*fl' T[\ ~N
YAU : T 7 U
l I
| '
| .
I U u
i id/ n’\u
\f’ / \ ~
U UAY > Ctx

rLAF (a,b) U.zAU

22U
77—b

r.At (a,B) U.xAU

r=27U
77 —B

F—T.A

xxxxxxxxx



c-
M

C.

(G L — M -

>
c

N

JDTT, III: type dependency as cuts

v
6.

X
c-

<
*

S
~

<
*
8

v
c

=]

T

c
M

- X 4_______ .

A :*

:\

3
\/\/
c <

N\

5

% 6.4_______

S
<.
\/\/
Z
N\

ctx

=
>
M

[+ b[a] : Bd]
bla] = b

FFa:A TAEB
(DTy) rF Bla]
Bla] —» B

F—Tr.A

Universita



JDTT, IV: type constructors

Plus, we can define what diagrams one needs to add to DTT in order to get type
constructors.

Theorem (3)

It has M-types if it has two additional rules N, A such that the diagram below is
commutative and the upper square is a pullback.

U.AU A s U
z.(uA.u)l lz () r I-F\l_ )\Ag.:t\n:g :B
UAU\ " r U (P TFA_ TAFEB
N / FF N,B
ctx

(ME): the unique map induced by the pullback from the classifier of (A, B, f, a)
(MC) n and B: the two related isomorphisms

Universita



JDTT, IV: type constructors

Theorem (4) Theorem (5)

It has extensional Id-types if it has It has dependent sum types if it has
two additional rules Id, i s.t. the two additional rules sum, pair s.t.
diagram below is commutative and  the diagram below is commutative
the upper square is a pullback. and the upper square is a pullback.

U i > U (U.£AU)L.yU pair > U
diag\L lz Z.(u.[lA)OZ.Y\L =
UxU Id > U U.AU sum > U

ctx \ ctx

It is clear how one can generalizes this and the calculations can be made once
for all constructors of this kind. s



In summation

We describe a general theory of judgement via 2-categorical means and prove
its coherence with respect to:

» DTT, and get a (first) general definition of type constructor in the process;
» natural deduction calculus;
» internal logic of a topos.

Still, there are plenty of things that should be looked into, for example:
» prove some completeness result;

» extend the theory and the definition to type constructors not included
(inductive, coinductive);

» study monads as modalities;
> express new logics (modal? linear?) in this framework.
Thank you for listening! Questions? 9



Universita
di Genova



