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“Abelian” versus “semi-abelian”

The notion of abelian category plays an important role in homological
algebra.

Definition
A category C is abelian if
I C has a zero-object 0
I C has binary products A× B
I any arrow f in C has a factorisation f = i ◦ p

X f //

p �� ��

Y

I
i

@@

where p is a normal epi and i is a normal mono.
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Normal monomorphism
An arrow k : K → A is called a normal monomorphism if it is the
kernel of some arrow in C : there is an f : A→ B such that

K k //

��

A

f
��

0 // B

is a pullback.

In the category Grp of groups :

I normal monomorphism = normal subgroup

In the category Ab of abelian groups :
I any monomorphism k : K → A is normal !
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Dually :

Normal epimorphism
An arrow q : A→ Q is a normal epimorphism if q is the cokernel of
some arrow in C.

Examples
In the categories Grp and Ab :
I normal epimorphism = surjective homomorphism.



Dually :

Normal epimorphism
An arrow q : A→ Q is a normal epimorphism if q is the cokernel of
some arrow in C.

Examples
In the categories Grp and Ab :
I normal epimorphism = surjective homomorphism.



The category Ab of abelian groups is abelian :

I Ab has a 0-object : the trivial group {0}
I the product A× B exists for any A,B
I any homomorphism f in Ab has a factorisation f = i ◦ p

X f //

p !! !!

Y

f (X )

i

==

where p is a surjective homomorphism and i is an inclusion as a
normal subgroup.



Grp is not abelian :
I it has a 0-object : the trivial group {1}
I the product A× B exists for any A, B ∈ Grp

I Problem : an arrow f in Grp does not have a factorisation f = i ◦ p

X f //

p !! !!

Y

f (X )

i

==

with p a surjective homomorphism and i an inclusion as a
normal subgroup.
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The category Rng of rings is not abelian :
I an arrow f in Rng does not have a factorisation f = i ◦ p

X f //

p !! !!

Y

f (X )

i

==

with p a surjective homomorphism and i an inclusion as an ideal.



Question : is there a list of simple axioms to develop a unified
treatment of the categories Grp, Rng, LieK ?

S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. (1950)



The problem was to find the “fourth proportional” in

Ab : abelian category = Grp : ?

Aim : find an axiomatic context for
I Noether’s isomorphism theorems
I non-abelian homological algebra
I radical theory
I commutator theory
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Definition (G. Janelidze, L. Márki, W.Tholen, 2002)
A finitely complete category C is semi-abelian if

I C has a 0 object
I C has A + B
I C is (Barr) exact
I C is (Bourn) protomodular :

0 // K

u

��

k // A

v

��

f
// B

oo

w

��
0 // K ′

k ′
// A′

f ′
// B′

oo

u,w isomorphisms⇒ v isomorphism.
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Example
The category Grp is semi-abelian :
I every homomorphism f in Grp has a factorisation f = i ◦ p

G f //

p "" ""

H

f (G)
<< i

<<

where p is a regular epimorphism and i is a monomorphism ;

I these factorisations are pullback stable ;
I Grp is exact ;
I the Split Short Five Lemma holds in Grp.



Example
The category Grp is semi-abelian :
I every homomorphism f in Grp has a factorisation f = i ◦ p

G f //

p "" ""

H

f (G)
<< i

<<

where p is a regular epimorphism and i is a monomorphism ;
I these factorisations are pullback stable ;
I Grp is exact ;

I the Split Short Five Lemma holds in Grp.



Example
The category Grp is semi-abelian :
I every homomorphism f in Grp has a factorisation f = i ◦ p

G f //

p "" ""

H

f (G)
<< i

<<

where p is a regular epimorphism and i is a monomorphism ;
I these factorisations are pullback stable ;
I Grp is exact ;
I the Split Short Five Lemma holds in Grp.



Examples
Grp, Rng, AlgK , LieK (more generally, any variety of Ω-groups) are all
semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any Grp(C) with C exact).

Any abelian category !

Terminology :
[ C is abelian ]⇔ [ C and Cop are semi-abelian] !
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Crossed modules
A crossed module is a group homomorphism A α // B with an
action of B on A such that :
I α(ba) = bα(a)b−1, for all a ∈ A, b ∈ B
I α(a)a1 = aa1a−1, for all a,a1 ∈ A.

A morphism of crossed modules is a pair (f1, f0) of group
homomorphisms making the square

A α //

f1
��

B

f0
��

A′
α′
// B′

commute, and preserving the action : f0(b)f1(a) = f1(ba).

The category XMod of crossed modules is semi-abelian :
XMod ∼= Grpd(Grp)
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Cocommutative Hopf algebras
Let K be a field, and HopfK ,coc the category of cocommutative Hopf
K -algebras.

Bialgebras
A K -bialgebra (A,m,u,∆, ε) is both a K -algebra (A,m,u) and a
K -coalgebra (A,∆, ε), where m,u,∆, ε are linear maps such that

A⊗ A⊗ A
1A⊗m //

m⊗1A

��

A⊗ A

m
��

A⊗ K
1A⊗u //

rA
$$

A⊗ A

m
��

A
u⊗1Aoo

lA||
A⊗ A m

// A A

A ∆ //

∆

��

A⊗ A

∆⊗1A

��

A⊗ K A⊗ A
ε⊗1A //1A⊗εoo K ⊗ A

A⊗ A
1A⊗∆

// A⊗ A⊗ A A

∆

OO

l−1
A

::

r−1
A

dd

commute, and m and u are K -coalgebra morphisms.
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Cocommutative Hopf algebras
A Hopf K -algebra (A,m,u,∆, ε,S) is a K -bialgebra with a linear map
S : A→ A, the antipode, making the following diagram commute :

A⊗ A
1A⊗S //
S⊗1A

// A⊗ A
m

""
A

∆

<<

εA
// K uA

// A

(A,m,u,∆, ε,S) is cocommutative if the following triangle commutes :

A
∆

""

∆

||
A⊗ A

tw
// A⊗ A

In Sweedler’s notations : ∆(a) = a1 ⊗ a2 = a2 ⊗ a1, for any a ∈ A.
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Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019)
For any field K the category HopfK ,coc is semi-abelian.

Remark
The subtle part of the proof is to show that regular epimorphisms are
pullback stable.

Corollary (M. Takeuchi, 1972)
The category Hopfcomm

K ,coc is abelian.

Proof :
Hopfcomm

K ,coc = Ab(HopfK ,coc).

A ∈ HopfK ,coc is abelian⇔ ∆: A→ A⊗ A is a normal mono

⇔ A is commutative : ab = ba

⇔ A ∈ Hopfcomm
K ,coc �
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In full generality, when C is a semi-abelian category, Ab(C) is an
abelian category !

Ab(C)
U
// C

ab
⊥
oo

Ab(C) is a full reflective subcategory of C, where the left adjoint
ab : C→ Ab(C) is an “abelianisation functor” :

ab(A) =
A

[A,A]
,

where [A,A] is a suitably defined normal subobject of A.
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If M → A and N → A are two subobjects, how does one define the
categorical commutator [M,N] in a semi-abelian category C?

Definition (Huq, 1968)
[M,N] = 0 if and only if there is a morphism p : M × N → A such that
the following diagram commutes :

M
(1M ,0) //

##

M × N

p
��

N
(0,1N )oo

{{
A
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The case of groups
If M → G and N → G are (the inclusions of) two normal subgroups of
a group G, the existence of a group morphism p making the diagram

M
(1M ,0) //
##

##

M × N

p
��

N
(0,1N )oo

{{

{{
G

commute implies that [M,N] = {1} :

m · n = p(m,1) · p(1,n) = p(m,n) = p(1,n) · p(m,1) = n ·m.

Conversely, the condition [M,N] = {1} implies that the map

p(m,n) = m · n, ∀m ∈ M,n ∈ N

is a group morphism.
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The case of cocommutative Hopf algebras
In the category HopfK ,coc of cocommutative Hopf algebras the
categorical product is the tensor product : given two Hopf algebra
morphisms f : C → A and g : C → B there is a unique morphism

φ = (f ⊗ g) ◦∆

making the following diagram commute :

A A⊗ B
π2=ε⊗1 //π1=1⊗εoo B

C

f

bb

g

<<

φ

OO



Lemma
Given two Hopf subalgebras X → A and Y → A in HopfK ,coc the
following conditions are equivalent :
I there is a morphism p : X ⊗ Y → A such that the following

diagram commutes :

X
(1X ,0) //
##

##

X ⊗ Y

p
��

Y
(0,1Y )oo

{{

{{
A

I xy = yx , for any x ∈ X , y ∈ Y ,
I x1y1S(x2)S(y2) = ε(x)ε(y), for any x ∈ X , y ∈ Y .
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The Hopf subalgebra

[X ,Y ] = 〈{x1y1S(x2)S(y2) | x ∈ X , y ∈ Y}〉A

of A generated by all commutators

x1y1S(x2)S(y2)

satisfies the universal property defining the categorical commutator.



In a semi-abelian C the commutator [X ,Y ] of X and Y in A is the
smallest normal subobject γ : C → A of A such that the images q(X )
and q(Y ) along the quotient q : A→ A

C “commute” :

[q(X ),q(Y )] = 0.

q(X )× q(Y )

p

��

X ��

��

,, ,,
Y��

��

-- --
q(X )

&&

&&

(1,0)
88

q(Y )
xx

xx

(0,1)
ff

C //
γ

// A q
// // A/C



Several classical results hold true in a semi-abelian category :
I the Noether isomorphism theorems
I the Snake Lemma and the 3× 3-Lemma (D. Bourn, 2001)

0

��

0

��

0

��
0 // K1

��

// A1

��

// B1

��

// 0

0 // K2

��

// A2

��

// B2

��

// 0

0 // K3 //

��

A3 //

��

B3

��

// 0

0 0 0

I the Jordan-Hölder theorem (F. Borceux and M. Grandis, 2007)



The “general idea” :
Whereas

abelian = exact + additive

the “non-additive” version of this “equation” is

semi-abelian = exact + 0 + binary coproducts + protomodular
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The abelian case
In an abelian category C any reflexive graph

X1

d ++

c
33 X0eoo d · e = 1X0 = c · e

is naturally equipped with an internal groupoid structure :

X1 ×X0 X1 m //
p1 ,,
p2

22 X1

s

�� d ,,
c
22 X0eoo .

The forgetful functor Grpd(C)→ RG(C) is a category isomorphism :
the “Lawvere condition”.



For instance, in Ab, the (object part) of the pullback is given by

X1 ×X0 X1 = {(f ,g) ∈ X1 × X1 | c(f ) = d(g)}

= { (X f // Y , Y
g // Z ) }.

In the category Ab of abelian groups the multiplication

m : X1 ×X0 X1 → X1

is (uniquely) defined by

m(f ,g) = g − 1Y + f .
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This is not the case in the category Grp of groups : a reflexive graph

X1

d ++

c
33 X0eoo

in Grp is a groupoid if and only if [Ker(d),Ker(c)] = {1}.

Grpd(Grp) is a reflective subcategory of RG(Grp)

Grpd(Grp)
U
// RG(Grp).

F
⊥
oo

For any reflexive graph X , the reflector F is defined by a quotient :

X1

d

��
c

��

ηX1 // // X1
[Ker(d),Ker(c)]

d
��

c

��
X0 1X0

e

OO

X0

e

OO
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The commutator of Hopf subalgebras in HopfK ,coc allows one to
describe the reflexive graphs underlying a groupoid structure :

Lemma
A reflexive graph in HopfK ,coc

X1

d ++

c
33 X0eoo d · e = 1X0 = c · e

has a groupoid structure if and only if

[Ker(d),Ker(c)] = 0.

Equivalently, one has that xy = yx for any x ∈ Ker(d) and y ∈ Ker(c),
where

Ker(d) = {x ∈ X1 | x1 ⊗ d(x2) = x ⊗ 1}.
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When B is cocommutative, a B-module Hopf algebra X is a
(cocommutative) Hopf algebra X equipped with a linear map
ξ : B ⊗ X → X , with ξ(b ⊗ x) = bx , such that
I (bb′)x = b(b′x)

I 1B x = x
I bxy = b1x b2y
I b1X = ε(b)1X

I (bx)1 ⊗ (bx)2 = b1x1 ⊗ b2x2

I ε(bx) = ε(b)ε(x)

Definition (S. Majid 2012)
A crossed module of (cocommutative) Hopf algebras is a morphism

X d // B,

where B ∈ HopfK ,coc , X is a B-module Hopf algebra such that

d(bx) = b1d(x)S(b2), d(y)x = y1xS(y2), ∀x , y ∈ X ,∀b ∈ B.
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There is a category of crossed modules of (cocommutative) Hopf
algebras, denoted by HXMod.

Lemma (M. Gran, F. Sterck, J. Vercruysse 2019)
The categories HXMod and Grpd(HopfK ,coc) are equivalent.

The proof of this result uses the “normalization functor”
N : Grpd(HopfK ,coc)→ HXMod sending a groupoid

X1

d **

c
44 Beoo

to the Hopf algebra morphism

Ker(d)
Ker (d) // X1

c // B ,

where the action B ⊗ Ker(d)→ Ker(d) is defined by

bk = e(b1) · k · e(S(b2)), ∀b ∈ B,∀k ∈ Ker(d).
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Theorem (D. Bourn, M. Gran 2002)
C is semi-abelian if and only if the category Grpd(C) of internal
groupoids in C is semi-abelian.

The category HXMod is then semi-abelian.

One can iterate the construction to define the category of
double groupoids :

Grpd(Grpd(HopfK ,coc)) ∼= Grpd2(HopfK ,coc),

which is again semi-abelian.

It is possible to describe double groupoids in HopfK ,coc in terms of
crossed squares of Hopf algebras (F. Sterck, 2021) :

Grpd2(HopfK ,coc) ∼= XMod2(HopfK ,coc)
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Torsion theories, groupoids and exact completion

Definition
Let C be an abelian category, (T ,F) a torsion theory in C.

1. T and F are full (replete) subcategories of C ;
2. for every object C ∈ C there is a short exact sequence

0 // T (C) // C // F (C) // 0

with T (C) ∈ T and F (C) ∈ F ;
3. if T ∈ T and X ∈ F then the only morphism from T to X is

T → 0→ X .
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Remark that the canonical short exact sequence

0 // T (C) // C
ηC // F (C) = C

T (C)
// 0

gives the reflection F : C→ F , and F is then normal epi-reflective :

F
U
// C

F
⊥
oo

Example

Abt.f .
U
// Ab

F
⊥
oo

where Ab is the category of abelian groups, Abt.f . is the category of
torsion-free abelian groups.
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Torsion-free subcategories of an abelian category C correspond to
(normal epi)-reflective semi-localizations F of C

F
U
// C.

F
⊥
oo

This means that F : C→ F is semi-left-exact (Cassidy-Hébert-Kelly,
1985) : it preserves all pullbacks of the form

P
π2 //

π1

��

U(X )

U(x)

��
C

ηC
// UF (C)

where x : X → F (C) lies in F .



Theorem (W. Rump, 2001)
For a category F the following conditions are equivalent :

1. F is a torsion-free subcategory of an abelian category C

F
U
// C;

F
⊥
oo

2. (a) F is additive ;
(b) any morphism f : A→ D in F has a factorization f = kgq

A f //

q
��

D

B g
// C

k

OO

with q a normal epi, g a bimorphism, k a normal mono ;
(c) normal epimorphisms are pullback stable.



A category F satisfying the conditions (a), (b) and (c) is called an
almost abelian category.

Examples
Any abelian category, Ab(Top), Ab(Haus), Banach spaces,
locally compact abelian groups, Mono(Ab), etc.
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New examples of torsion theories have been studied in the categories
Grp,Grp(Comp),CRng,Grpd(Grp), HopfK ,coc .

Question
Can we find a similar characterization in the semi-abelian context?
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A crucial result is the following :

Lemma
Let F be a regular category. Then :
F is protomodular⇔ its exact completion Fex/reg is protomodular.

Theorem (M. Gran and S. Lack, 2016)

(a) F is a semi-localization of an exact protomodular category C ;
(b) F is regular, is a semi-localization of its exact completion Fex/reg,

and Fex/reg is protomodular ;
(c) F is regular, protomodular, and has stable coequalizers of

equivalence relations.
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To prove this we also use the following crucial result :

Theorem (S. Mantovani, 1998)
For a category F the following conditions are equivalent :

1. F is a semi-localization of an exact category C ;
2. F has finite limits and stable coequalizers of equivalence

relations.



Given a coequalizer q : A→ B of an equivalence relation

R
p1 //

p2

// A
q // // B

and any arrow f
C

f
��

R
p1 //

p2

// A
q // // B
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��
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C

f
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Given in X a coequalizer q : A→ B of an equivalence relation

R
p1 //

p2

// A
q // B

and any arrow f

R
p1 //

p2

//

��

A×B C
q // //

��

C

f
��

R
p1 //

p2

// A
q // // B

F has stable coequalizers ⇔ q = coeq(p1,p2)



Example
The category RedCRng of reduced rings (xn = 0 ⇒ x = 0) is a
semi-localization of a semi-abelian category.

In this case :
RedCRngex/reg = CRng

Example
Any torsion-free subcategory F of the category Grp is such that

Fex/reg = Grp.
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Groupoids and exact completion
Let Eq(C) be the category of equivalence relations in a semi-abelian
category C. It is a torsion-free subcategory of Grpd(C), where the
torsion subcategory is Ab(C). Then :

[Eq(C)]ex/reg = Grpd(C).

Remark
This is not true when C is the category of sets.

The category NormMono(C) of normal monomorphisms in a
semi-abelian C is a semi-localization of a semi-abelian category, and

[NormMono(C)]ex/reg = XMod(C),

where XMod(C) is the category of “internal crossed modules”
(G. Janelidze, 2003).
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Final remarks
I Internal groupoids in algebraic categories are important in

commutator theory and universal algebra.

I They occur in homological and homotopical algebra also as
crossed modules, crossed squares, and central extensions.

I Grpd(C) is a source of non-abelian torsion theories.
I Grpd(C) is the solution of a universal “exactness” problem.
I Internal groupoids have a central role in the fundamental

theorem of categorical Galois theory.
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