Semi-abelian categories, Hopf algebras and internal groupoids

Marino Gran

Institut de recherche en mathématique et physique

ItaCa 2021 21 December 2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

"Abelian" versus "semi-abelian"

Internal groupoids in algebra

Torsion theories, groupoids and exact completion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

"Abelian" versus "semi-abelian"

Internal groupoids in algebra

Torsion theories, groupoids and exact completion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

"Abelian" versus "semi-abelian"

The notion of abelian category plays an important role in homological algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

"Abelian" versus "semi-abelian"

The notion of abelian category plays an important role in homological algebra.

Definition

- A category ${\mathbb C}$ is abelian if
 - C has a zero-object 0
 - \mathbb{C} has binary products $A \times B$
 - any arrow *f* in \mathbb{C} has a factorisation $f = i \circ p$

(ロ) (同) (三) (三) (三) (○) (○)

where *p* is a *normal epi* and *i* is a *normal mono*.

Normal monomorphism

An arrow $k: K \to A$ is called a normal monomorphism if it is the kernel of some arrow in \mathbb{C} : there is an $f: A \to B$ such that

is a pullback.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Normal monomorphism

An arrow $k : K \to A$ is called a normal monomorphism if it is the kernel of some arrow in \mathbb{C} : there is an $f : A \to B$ such that

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

is a pullback.

In the category Grp of groups :

normal monomorphism = normal subgroup

In the category Ab of abelian groups :

• any monomorphism $k: K \to A$ is normal!

Dually :

Normal epimorphism

An arrow $q: A \rightarrow Q$ is a normal epimorphism if q is the cokernel of some arrow in \mathbb{C} .

Dually :

Normal epimorphism

An arrow $q: A \rightarrow Q$ is a normal epimorphism if q is the cokernel of some arrow in \mathbb{C} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

In the categories Grp and Ab :

normal epimorphism = surjective homomorphism.

The category Ab of abelian groups is abelian :

- Ab has a 0-object : the trivial group {0}
- the product $A \times B$ exists for any A, B
- any homomorphism *f* in Ab has a factorisation $f = i \circ p$

where *p* is a *surjective homomorphism* and *i* is an inclusion as a *normal subgroup*.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Grp is not abelian :

- it has a 0-object : the trivial group {1}
- the product $A \times B$ exists for any $A, B \in Grp$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Grp is not abelian :

- it has a 0-object : the trivial group {1}
- the product $A \times B$ exists for any $A, B \in Grp$
- **Problem** : an arrow f in Grp does not have a factorisation $f = i \circ p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

with *p* a *surjective homomorphism* and *i* an inclusion as a **normal subgroup**.

The category Rng of rings is not abelian :

▶ an arrow *f* in Rng does not have a factorisation $f = i \circ p$

with *p* a *surjective homomorphism* and *i* an inclusion as an **ideal**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question : is there a list of simple axioms to develop a unified treatment of the categories Grp, Rng, Lie_{K} ?

S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. (1950)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The problem was to find the "fourth proportional" in

Ab : abelian category = Grp : ?

The problem was to find the "fourth proportional" in

Ab : abelian category = Grp : ?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Aim : find an axiomatic context for

- Noether's isomorphism theorems
- non-abelian homological algebra
- radical theory
- commutator theory

Definition (G. Janelidze, L. Márki, W.Tholen, 2002) A finitely complete category \mathbb{C} is semi-abelian if

Definition (G. Janelidze, L. Márki, W.Tholen, 2002)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A finitely complete category \mathbb{C} is semi-abelian if

- C has a 0 object
- \blacktriangleright \mathbb{C} has A + B

Definition (G. Janelidze, L. Márki, W.Tholen, 2002)

A finitely complete category \mathbb{C} is semi-abelian if

- C has a 0 object
- ▶ \mathbb{C} has A + B
- ▶ C is (Barr) exact
- \blacktriangleright \mathbb{C} is (Bourn) protomodular :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

u, w isomorphisms $\Rightarrow v$ isomorphism.

The category Grp is semi-abelian :

• every homomorphism *f* in Grp has a factorisation $f = i \circ p$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where *p* is a regular epimorphism and *i* is a monomorphism;

The category Grp is semi-abelian :

• every homomorphism *f* in Grp has a factorisation $f = i \circ p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where *p* is a regular epimorphism and *i* is a monomorphism;

these factorisations are pullback stable;

Grp is exact;

The category Grp is semi-abelian :

• every homomorphism f in Grp has a factorisation $f = i \circ p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where *p* is a regular epimorphism and *i* is a monomorphism;

- these factorisations are pullback stable;
- Grp is exact;
- the Split Short Five Lemma holds in Grp.

Grp, Rng, Alg_K, Lie_K (more generally, any variety of Ω -groups) are all semi-abelian categories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Grp, Rng, Alg_K, Lie_K (more generally, any variety of Ω -groups) are all semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any $Grp(\mathbb{C})$ with \mathbb{C} exact).

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Grp, Rng, Alg_K, Lie_K (more generally, any variety of Ω -groups) are all semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any $Grp(\mathbb{C})$ with \mathbb{C} exact).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Any abelian category !

Grp, Rng, Alg_K, Lie_K (more generally, any variety of Ω -groups) are all semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any $Grp(\mathbb{C})$ with \mathbb{C} exact).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Any abelian category!

Terminology:

[\mathbb{C} is abelian] \Leftrightarrow [\mathbb{C} and \mathbb{C}^{op} are semi-abelian]!

Crossed modules

A crossed module is a group homomorphism $A \xrightarrow{\alpha} B$ with an action of *B* on *A* such that :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\alpha({}^{b}a) = b\alpha(a)b^{-1}$, for all $a \in A$, $b \in B$
- $\alpha(a)a_1 = aa_1a^{-1}$, for all $a, a_1 \in A$.

Crossed modules

A crossed module is a group homomorphism $A \xrightarrow{\alpha} B$ with an action of *B* on *A* such that :

•
$$\alpha({}^{b}a) = b\alpha(a)b^{-1}$$
, for all $a \in A$, $b \in B$

• $\alpha(a)a_1 = aa_1a^{-1}$, for all $a, a_1 \in A$.

A morphism of crossed modules is a pair (f_1, f_0) of group homomorphisms making the square

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

commute, and preserving the action : $f_0(b)f_1(a) = f_1(ba)$.

Crossed modules

A crossed module is a group homomorphism $A \xrightarrow{\alpha} B$ with an action of *B* on *A* such that :

•
$$\alpha({}^{b}a) = b\alpha(a)b^{-1}$$
, for all $a \in A$, $b \in B$

• $\alpha(a)a_1 = aa_1a^{-1}$, for all $a, a_1 \in A$.

A morphism of crossed modules is a pair (f_1, f_0) of group homomorphisms making the square

commute, and preserving the action : $f_0(b)f_1(a) = f_1(ba)$.

The category XMod of crossed modules is semi-abelian : XMod ≅ Grpd(Grp)

Let K be a field, and Hopf_{*K*,coc} the category of cocommutative Hopf *K*-algebras.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let *K* be a field, and $Hopf_{K,coc}$ the category of cocommutative Hopf *K*-algebras.

Bialgebras

A *K*-bialgebra $(A, m, u, \Delta, \epsilon)$ is both a *K*-algebra (A, m, u) and a *K*-coalgebra (A, Δ, ϵ) , where m, u, Δ, ϵ are linear maps such that

commute, and *m* and *u* are *K*-coalgebra morphisms.

A Hopf *K*-algebra $(A, m, u, \Delta, \epsilon, S)$ is a *K*-bialgebra with a linear map $S: A \rightarrow A$, the antipode, making the following diagram commute :

・ コット (雪) (小田) (コット 日)

A Hopf *K*-algebra $(A, m, u, \Delta, \epsilon, S)$ is a *K*-bialgebra with a linear map $S: A \rightarrow A$, the antipode, making the following diagram commute :

 $(A, m, u, \Delta, \epsilon, S)$ is cocommutative if the following triangle commutes :

In Sweedler's notations : $\Delta(a) = a_1 \otimes a_2 = a_2 \otimes a_1$, for any $a \in A$.

Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019) For any field *K* the category $Hopf_{K,coc}$ is semi-abelian.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019)

For any field K the category $Hopf_{K,coc}$ is semi-abelian.

Remark

The subtle part of the proof is to show that regular epimorphisms are pullback stable.

(日)

Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019)

For any field K the category $Hopf_{K,coc}$ is semi-abelian.

Remark

The subtle part of the proof is to show that regular epimorphisms are pullback stable.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollary (M. Takeuchi, 1972)

The category $Hopf_{K,coc}^{comm}$ is abelian.
Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019)

For any field K the category $Hopf_{K,coc}$ is semi-abelian.

Remark

The subtle part of the proof is to show that regular epimorphisms are pullback stable.

Corollary (M. Takeuchi, 1972)

The category $Hopf_{K,coc}^{comm}$ is abelian.

Proof :

$$\operatorname{Hopf}_{K,coc}^{comm} = \operatorname{Ab}(\operatorname{Hopf}_{K,coc}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (M. Gran, F. Sterck and J. Vercruysse, 2019)

For any field K the category $Hopf_{K,coc}$ is semi-abelian.

Remark

The subtle part of the proof is to show that regular epimorphisms are pullback stable.

Corollary (M. Takeuchi, 1972)

The category Hopf^{comm}_{K,coc} is abelian.

Proof :

$$Hopf_{K,coc}^{comm} = Ab(Hopf_{K,coc}).$$

 $A \in \mathsf{Hopf}_{K,coc}$ is abelian $\Leftrightarrow \Delta \colon A \to A \otimes A$ is a normal mono

 \Leftrightarrow A is commutative : ab = ba

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$\Leftrightarrow A \in \operatorname{Hopf}_{K,coc}^{comm}$$

In full generality, when \mathbb{C} is a semi-abelian category, $Ab(\mathbb{C})$ is an abelian category !

$$\mathsf{Ab}(\mathbb{C}) \xrightarrow[]{\underline{ab}}{\underline{ab}} \mathbb{C}$$

In full generality, when \mathbb{C} is a semi-abelian category, $Ab(\mathbb{C})$ is an abelian category !

$$\mathsf{Ab}(\mathbb{C}) \xrightarrow{\overset{ab}{\leftarrow} } \mathbb{C}$$

 $Ab(\mathbb{C})$ is a full reflective subcategory of \mathbb{C} , where the left adjoint $ab \colon \mathbb{C} \to Ab(\mathbb{C})$ is an "abelianisation functor" :

$$\mathsf{ab}(A) = rac{A}{[A,A]},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where [A, A] is a suitably defined normal subobject of A.

If $M \to A$ and $N \to A$ are two subobjects, how does one define the categorical commutator [M, N] in a semi-abelian category \mathbb{C} ?

If $M \to A$ and $N \to A$ are two subobjects, how does one define the categorical commutator [M, N] in a semi-abelian category \mathbb{C} ?

Definition (Huq, 1968)

[M, N] = 0 if and only if there is a morphism $p: M \times N \rightarrow A$ such that the following diagram commutes :

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The case of groups

If $M \rightarrow G$ and $N \rightarrow G$ are (the inclusions of) two normal subgroups of a group *G*, the existence of a group morphism *p* making the diagram

commute implies that $[M, N] = \{1\}$:

 $m \cdot n = p(m, 1) \cdot p(1, n) = p(m, n) = p(1, n) \cdot p(m, 1) = n \cdot m.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The case of groups

If $M \rightarrow G$ and $N \rightarrow G$ are (the inclusions of) two normal subgroups of a group *G*, the existence of a group morphism *p* making the diagram

commute implies that $[M, N] = \{1\}$:

$$m \cdot n = p(m,1) \cdot p(1,n) = p(m,n) = p(1,n) \cdot p(m,1) = n \cdot m.$$

Conversely, the condition $[M, N] = \{1\}$ implies that the map

$$p(m,n) = m \cdot n, \quad \forall m \in M, n \in N$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

is a group morphism.

The case of cocommutative Hopf algebras

In the category $\text{Hopf}_{K,coc}$ of cocommutative Hopf algebras the categorical product is the tensor product : given two Hopf algebra morphisms $f: C \to A$ and $g: C \to B$ there is a unique morphism

$$\phi = (f \otimes g) \circ \Delta$$

making the following diagram commute :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Lemma

Given two Hopf subalgebras $X \to A$ and $Y \to A$ in $\text{Hopf}_{K,coc}$ the following conditions are equivalent :

► there is a morphism p: X ⊗ Y → A such that the following diagram commutes :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Lemma

Given two Hopf subalgebras $X \to A$ and $Y \to A$ in $\text{Hopf}_{K,coc}$ the following conditions are equivalent :

► there is a morphism p: X ⊗ Y → A such that the following diagram commutes :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▶ xy = yx, for any $x \in X, y \in Y$,

Lemma

Given two Hopf subalgebras $X \to A$ and $Y \to A$ in $\text{Hopf}_{K,coc}$ the following conditions are equivalent :

► there is a morphism p: X ⊗ Y → A such that the following diagram commutes :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- ▶ xy = yx, for any $x \in X, y \in Y$,
- ► $x_1y_1S(x_2)S(y_2) = \epsilon(x)\epsilon(y)$, for any $x \in X, y \in Y$.

The Hopf subalgebra

 $[X, Y] = \langle \{x_1y_1S(x_2)S(y_2) \mid x \in X, y \in Y\} \rangle_A$

of A generated by all commutators

 $x_1y_1S(x_2)S(y_2)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

satisfies the universal property defining the categorical commutator.

In a semi-abelian \mathbb{C} the commutator [X, Y] of X and Y in A is the smallest normal subobject $\gamma: C \to A$ of A such that the images q(X) and q(Y) along the quotient $q: A \to \frac{A}{C}$ "commute":

[q(X),q(Y)]=0.

Several classical results hold true in a semi-abelian category :

- the Noether isomorphism theorems
- the Snake Lemma and the 3 × 3-Lemma (D. Bourn, 2001)

the Jordan-Hölder theorem (F. Borceux and M. Grandis, 2007)

The "general idea" : Whereas

abelian = exact + additive

The "general idea" : Whereas

abelian = exact + additive

the "non-additive" version of this "equation" is

semi-abelian = exact + 0 + binary coproducts + protomodular

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

"Abelian" versus "semi-abelian"

Internal groupoids in algebra

Torsion theories, groupoids and exact completion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The abelian case

In an abelian category \mathbb{C} any reflexive graph

$$X_1 \underbrace{\overset{d}{\underbrace{e}} X_0}_{c} \qquad d \cdot e = \mathbf{1}_{X_0} = c \cdot e$$

is naturally equipped with an internal groupoid structure :

$$X_1 \times_{X_0} X_1 \xrightarrow[p_2]{p_1} X_1 \xleftarrow[c]{s} d$$

The forgetful functor $Grpd(\mathbb{C}) \to RG(\mathbb{C})$ is a category isomorphism : the "Lawvere condition".

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For instance, in Ab, the (object part) of the pullback is given by

$$X_1 \times_{X_0} X_1 = \{(f,g) \in X_1 \times X_1 \mid c(f) = d(g)\}$$
$$= \{(X \xrightarrow{f} Y, Y \xrightarrow{g} Z)\}.$$

For instance, in Ab, the (object part) of the pullback is given by

$$X_1 \times_{X_0} X_1 = \{ (f,g) \in X_1 \times X_1 \mid c(f) = d(g) \}$$
$$= \{ (X \xrightarrow{f} Y, Y \xrightarrow{g} Z) \}.$$

In the category Ab of abelian groups the multiplication

$$m \colon X_1 \times_{X_0} X_1 \to X_1$$

is (uniquely) defined by

 $m(f,g)=g-1_Y+f.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is not the case in the category Grp of groups : a reflexive graph

$$X_1 \overset{d}{\underset{c}{\overset{d}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}} X_0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

in Grp is a groupoid if and only if $[Ker(d), Ker(c)] = \{1\}$.

This is not the case in the category Grp of groups : a reflexive graph

in Grp is a groupoid if and only if $[Ker(d), Ker(c)] = \{1\}$.

Grpd(Grp) is a reflective subcategory of RG(Grp)

$$\operatorname{Grpd}(\operatorname{Grp}) \xrightarrow[]{\perp}{U} \operatorname{RG}(\operatorname{Grp}).$$

For any reflexive graph X, the reflector F is defined by a quotient :

The commutator of Hopf subalgebras in $\text{Hopf}_{K,coc}$ allows one to describe the reflexive graphs underlying a groupoid structure :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The commutator of Hopf subalgebras in $\text{Hopf}_{K,coc}$ allows one to describe the reflexive graphs underlying a groupoid structure :

Lemma

A reflexive graph in Hopf_{K,coc}

$$X_1 \underbrace{\underbrace{a}_{c}}_{c} X_0 \qquad d \cdot e = \mathbf{1}_{X_0} = c \cdot e$$

has a groupoid structure if and only if

[Ker(d), Ker(c)] = 0.

Equivalently, one has that xy = yx for any $x \in \text{Ker}(d)$ and $y \in \text{Ker}(c)$, where

$$\operatorname{Ker}(d) = \{ x \in X_1 \mid x_1 \otimes d(x_2) = x \otimes 1 \}.$$

When *B* is cocommutative, a *B*-module Hopf algebra *X* is a (cocommutative) Hopf algebra *X* equipped with a linear map $\xi \colon B \otimes X \to X$, with $\xi(b \otimes x) = {}^{b}x$, such that • ${}^{(bb')}x = {}^{b}({}^{b'}x)$ • ${}^{1_{B}}x = x$ • ${}^{b}xy = {}^{b_{1}}x {}^{b_{2}}y$ • ${}^{b}1_{X} = \epsilon(b)1_{X}$ • ${}^{(b}x)_{1} \otimes {}^{(b}x)_{2} = {}^{b_{1}}x_{1} \otimes {}^{b_{2}}x_{2}$ • $\epsilon({}^{b}x) = \epsilon(b)\epsilon(x)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

When *B* is cocommutative, a *B*-module Hopf algebra *X* is a (cocommutative) Hopf algebra *X* equipped with a linear map $\xi : B \otimes X \to X$, with $\xi(b \otimes x) = {}^{b}x$, such that $({}^{bb'})_{X} = {}^{b}({}^{b'}x)$ ${}^{1_{B}}x = x$ ${}^{b}xy = {}^{b_{1}}x{}^{b_{2}}y$ ${}^{b}1_{X} = \epsilon(b)1_{X}$ $({}^{b}x)_{1} \otimes ({}^{b}x)_{2} = {}^{b_{1}}x_{1} \otimes {}^{b_{2}}x_{2}$ ${}^{c}\epsilon({}^{b}x) = \epsilon(b)\epsilon(x)$

Definition (S. Majid 2012)

A crossed module of (cocommutative) Hopf algebras is a morphism

$$X \xrightarrow{d} B_{1}$$

where $B \in Hopf_{K,coc}$, X is a B-module Hopf algebra such that

 $d(^bx) = b_1 d(x) S(b_2),$ $d(y) = y_1 x S(y_2),$ $\forall x, y \in X, \forall b \in B.$

(ロ) (同) (三) (三) (三) (○) (○)

There is a category of crossed modules of (cocommutative) Hopf algebras, denoted by HXMod.

There is a category of crossed modules of (cocommutative) Hopf algebras, denoted by HXMod.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma (M. Gran, F. Sterck, J. Vercruysse 2019) The categories HXMod and $Grpd(Hopf_{K,coc})$ are equivalent. There is a category of crossed modules of (cocommutative) Hopf algebras, denoted by HXMod.

Lemma (M. Gran, F. Sterck, J. Vercruysse 2019) The categories HXMod and $Grpd(Hopf_{K,coc})$ are equivalent.

The proof of this result uses the "normalization functor" $N: \operatorname{Grpd}(\operatorname{Hopf}_{K,coc}) \to \operatorname{HXMod}$ sending a groupoid

$$X_1 \underbrace{\overset{d}{\underbrace{e}}}_{c} E$$

to the Hopf algebra morphism

$$\operatorname{Ker}(\mathsf{d}) \xrightarrow{\operatorname{Ker}(d)} X_1 \xrightarrow{c} B,$$

where the action $B \otimes \text{Ker}(d) \rightarrow \text{Ker}(d)$ is defined by

 ${}^{b}k = e(b_1) \cdot k \cdot e(S(b_2)), \quad \forall b \in B, \forall k \in \operatorname{Ker}(d).$

Theorem (D. Bourn, M. Gran 2002)

 \mathbb{C} is semi-abelian if and only if the category $\operatorname{Grpd}(\mathbb{C})$ of internal groupoids in \mathbb{C} is semi-abelian.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The category HXMod is then semi-abelian.

Theorem (D. Bourn, M. Gran 2002)

 \mathbb{C} is semi-abelian if and only if the category $\operatorname{Grpd}(\mathbb{C})$ of internal groupoids in \mathbb{C} is semi-abelian.

The category HXMod is then semi-abelian.

One can iterate the construction to define the category of double groupoids :

 $\operatorname{Grpd}(\operatorname{Grpd}(\operatorname{Hopf}_{K,coc})) \cong \operatorname{Grpd}^2(\operatorname{Hopf}_{K,coc}),$

(ロ) (同) (三) (三) (三) (○) (○)

which is again semi-abelian.

Theorem (D. Bourn, M. Gran 2002)

 \mathbb{C} is semi-abelian if and only if the category $\operatorname{Grpd}(\mathbb{C})$ of internal groupoids in \mathbb{C} is semi-abelian.

The category HXMod is then semi-abelian.

One can iterate the construction to define the category of double groupoids :

 $\operatorname{Grpd}(\operatorname{Grpd}(\operatorname{Hopf}_{K,coc})) \cong \operatorname{Grpd}^2(\operatorname{Hopf}_{K,coc}),$

which is again semi-abelian.

It is possible to describe double groupoids in $\text{Hopf}_{K,coc}$ in terms of crossed squares of Hopf algebras (F. Sterck, 2021) :

 $\operatorname{Grpd}^2(\operatorname{Hopf}_{K, \operatorname{coc}}) \cong \operatorname{XMod}^2(\operatorname{Hopf}_{K, \operatorname{coc}})$

Outline

"Abelian" versus "semi-abelian"

Internal groupoids in algebra

Torsion theories, groupoids and exact completion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Torsion theories, groupoids and exact completion

Definition Let \mathbb{C} be an abelian category, $(\mathcal{T}, \mathcal{F})$ a torsion theory in \mathbb{C} .

Torsion theories, groupoids and exact completion

Definition

Let \mathbb{C} be an abelian category, $(\mathcal{T}, \mathcal{F})$ a torsion theory in \mathbb{C} .

- **1.** \mathcal{T} and \mathcal{F} are full (replete) subcategories of \mathbb{C} ;
- **2.** for every object $C \in \mathbb{C}$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{F}$;
Torsion theories, groupoids and exact completion

Definition

Let \mathbb{C} be an abelian category, $(\mathcal{T}, \mathcal{F})$ a torsion theory in \mathbb{C} .

- **1.** \mathcal{T} and \mathcal{F} are full (replete) subcategories of \mathbb{C} ;
- **2.** for every object $C \in \mathbb{C}$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{F}$;

3. if $T \in T$ and $X \in F$ then the only morphism from T to X is

$$T \rightarrow 0 \rightarrow X$$
.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark that the canonical short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \xrightarrow{\eta_C} F(C) = \frac{C}{T(C)} \longrightarrow 0$$

gives the reflection $F \colon \mathbb{C} \to \mathcal{F}$, and \mathcal{F} is then normal epi-reflective :

$$\mathcal{F} \xrightarrow[]{\overset{F}{\underbrace{}}} \mathbb{C}$$

Remark that the canonical short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \xrightarrow{\eta_C} F(C) = \frac{C}{T(C)} \longrightarrow 0$$

gives the reflection $F : \mathbb{C} \to \mathcal{F}$, and \mathcal{F} is then normal epi-reflective :

Example

$$Ab_{t.f.} \xrightarrow{F} Ab$$

where Ab is the category of abelian groups, $Ab_{t.f.}$ is the category of torsion-free abelian groups.

Torsion-free subcategories of an abelian category \mathbb{C} correspond to (normal epi)-reflective semi-localizations \mathcal{F} of \mathbb{C}

$$\mathcal{F} \xrightarrow{\frac{F}{\bot}} \mathbb{C}$$

This means that $F : \mathbb{C} \to \mathcal{F}$ is semi-left-exact (Cassidy-Hébert-Kelly, 1985) : it preserves all pullbacks of the form

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $x: X \to F(C)$ lies in \mathcal{F} .

Theorem (W. Rump, 2001)

For a category ${\mathcal F}$ the following conditions are equivalent :

1. ${\mathcal F}$ is a torsion-free subcategory of an abelian category ${\mathbb C}$

$$\mathcal{F} \xrightarrow{\overset{F}{\underbrace{}}}_{\underbrace{}} \mathbb{C};$$

2. (a) \mathcal{F} is additive;

(b) any morphism $f: A \rightarrow D$ in \mathcal{F} has a factorization f = kgq

with q a normal epi, g a bimorphism, k a normal mono; (c) normal epimorphisms are pullback stable. A category \mathcal{F} satisfying the conditions (*a*), (*b*) and (*c*) is called an almost abelian category.

A category \mathcal{F} satisfying the conditions (*a*), (*b*) and (*c*) is called an almost abelian category.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

Any abelian category, Ab(Top), Ab(Haus), Banach spaces, locally compact abelian groups, Mono(Ab), etc.

New examples of torsion theories have been studied in the categories $Grp, Grp(Comp), CRng, Grpd(Grp), Hopf_{K,coc}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

New examples of torsion theories have been studied in the categories $Grp, Grp(Comp), CRng, Grpd(Grp), Hopf_{K,coc}$.

Question

Can we find a similar characterization in the semi-abelian context?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A crucial result is the following :

Lemma

Let \mathcal{F} be a regular category. Then :

 $\mathcal{F} \text{ is protomodular} \Leftrightarrow \text{its exact completion } \mathcal{F}_{\text{ex/reg}} \text{ is protomodular}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A crucial result is the following :

Lemma

Let \mathcal{F} be a regular category. Then :

 \mathcal{F} is protomodular \Leftrightarrow its exact completion $\mathcal{F}_{ex/reg}$ is protomodular.

Theorem (M. Gran and S. Lack, 2016)

- (a) \mathcal{F} is a semi-localization of an exact protomodular category \mathbb{C} ;
- (b) \mathcal{F} is regular, is a semi-localization of its exact completion $\mathcal{F}_{ex/reg}$, and $\mathcal{F}_{ex/reg}$ is protomodular;

A D F A 同 F A E F A E F A Q A

(c) *F* is regular, protomodular, and has stable coequalizers of equivalence relations.

To prove this we also use the following crucial result :

Theorem (S. Mantovani, 1998)

For a category \mathcal{F} the following conditions are equivalent :

- **1.** \mathcal{F} is a semi-localization of an exact category \mathbb{C} ;
- **2.** *F* has finite limits and stable coequalizers of equivalence relations.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a coequalizer $q: A \rightarrow B$ of an equivalence relation

Given a coequalizer $q: A \rightarrow B$ of an equivalence relation

and any arrow f

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Given a coequalizer $q: A \rightarrow B$ of an equivalence relation

and any arrow f,

(日) (日) (日) (日) (日) (日) (日)

Given in \mathcal{X} a coequalizer $q: A \rightarrow B$ of an equivalence relation

and any arrow f

 \mathcal{F} has stable coequalizers $\Leftrightarrow \overline{q} = \operatorname{coeq}(\overline{p}_1, \overline{p}_2)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

The category RedCRng of reduced rings ($x^n = 0 \Rightarrow x = 0$) is a semi-localization of a semi-abelian category.

In this case :

 $RedCRng_{ex/reg} = CRng$

Example

The category RedCRng of reduced rings ($x^n = 0 \Rightarrow x = 0$) is a semi-localization of a semi-abelian category.

In this case :

 $RedCRng_{ex/reg} = CRng$

Example

Any torsion-free subcategory \mathcal{F} of the category Grp is such that

 $\mathcal{F}_{\text{ex/reg}} = \text{Grp.}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Groupoids and exact completion

Let $Eq(\mathbb{C})$ be the category of equivalence relations in a semi-abelian category \mathbb{C} . It is a torsion-free subcategory of $Grpd(\mathbb{C})$, where the torsion subcategory is $Ab(\mathbb{C})$. Then :

 $[\mathsf{Eq}(\mathbb{C})]_{\mathsf{ex/reg}} = \mathsf{Grpd}(\mathbb{C}).$

Groupoids and exact completion

Let $Eq(\mathbb{C})$ be the category of equivalence relations in a semi-abelian category \mathbb{C} . It is a torsion-free subcategory of $Grpd(\mathbb{C})$, where the torsion subcategory is $Ab(\mathbb{C})$. Then :

 $[Eq(\mathbb{C})]_{ex/reg} = Grpd(\mathbb{C}).$

Remark

This is not true when \mathbb{C} is the category of sets.

Groupoids and exact completion

Let $Eq(\mathbb{C})$ be the category of equivalence relations in a semi-abelian category \mathbb{C} . It is a torsion-free subcategory of $Grpd(\mathbb{C})$, where the torsion subcategory is $Ab(\mathbb{C})$. Then :

 $[Eq(\mathbb{C})]_{ex/reg} = Grpd(\mathbb{C}).$

Remark

This is not true when \mathbb{C} is the category of sets.

The category $NormMono(\mathbb{C})$ of normal monomorphisms in a semi-abelian \mathbb{C} is a semi-localization of a semi-abelian category, and

 $[\mathsf{NormMono}(\mathbb{C})]_{\mathsf{ex/reg}} = \mathsf{XMod}(\mathbb{C}),$

where $\text{XMod}(\mathbb{C})$ is the category of "internal crossed modules" (G. Janelidze, 2003).

Internal groupoids in algebraic categories are important in commutator theory and universal algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Internal groupoids in algebraic categories are important in commutator theory and universal algebra.
- They occur in homological and homotopical algebra also as crossed modules, crossed squares, and central extensions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Internal groupoids in algebraic categories are important in commutator theory and universal algebra.
- They occur in homological and homotopical algebra also as crossed modules, crossed squares, and central extensions.

(ロ) (同) (三) (三) (三) (○) (○)

• $Grpd(\mathbb{C})$ is a source of non-abelian torsion theories.

- Internal groupoids in algebraic categories are important in commutator theory and universal algebra.
- They occur in homological and homotopical algebra also as crossed modules, crossed squares, and central extensions.
- ► Grpd(ℂ) is a source of non-abelian torsion theories.
- $Grpd(\mathbb{C})$ is the solution of a universal "exactness" problem.

(ロ) (同) (三) (三) (三) (○) (○)

- Internal groupoids in algebraic categories are important in commutator theory and universal algebra.
- They occur in homological and homotopical algebra also as crossed modules, crossed squares, and central extensions.
- ► Grpd(ℂ) is a source of non-abelian torsion theories.
- ► Grpd(ℂ) is the solution of a universal "exactness" problem.

(ロ) (同) (三) (三) (三) (○) (○)

Internal groupoids have a central role in the fundamental theorem of categorical Galois theory.

References

- M. Gran and S. Lack, Semi-localizations of semi-abelian categories, J. Algebra (2016)
- M. Gran, F. Sterck and J. Vercruysse, A semi-abelian extension of a theorem by Takeuchi, J. Pure Appl. Algebra (2019)
- G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra (2002)
- S. Mantovani, Semi-localizations of exact and lextensive categories Cah. Top. Géom. Diff. Catég. (1998)
- W. Rump, Almost abelian categories, Cah. Topol. Géom. Différent. Catég. (2001)
- F. Sterck, Crossed squares of cocommutative Hopf algebras, J. Algebra (2021)

(ロ) (同) (三) (三) (三) (○) (○)