\mathbb{E}_k -centers of monoidal ∞ -categories

Guglielmo Nocera

Scuola Normale Superiore di Pisa, IRMA Strasbourg

ItaCa Università di Genova

21 dicembre 2021

Preliminaries

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application the Derived Satake Theorem

Fin_{*}: Obj(Fin_{*})= {
$$\langle n \rangle = \{*, 1, \dots, n\} : n \in \mathbb{N}$$
}
Mor(Fin_{*})= { $f : \langle m \rangle \rightarrow \langle n \rangle : f(*) = *$ }

For any (nonpointed) finite set S, Rect((0,1)^k × S, (0,1)^k)
→ the set of *rectilinear embeddings*, where a rectilinear embedding r : (0,1)^k × S → (0,1)^k is

- an open embedding,

- whose restrictions to $(0,1)^k \times \{j\}$ are of the form $r(x,j) = D_i x + b_i$ where $D_i = diag(\{d_i^i\})$ and $d_i^i > 0$.

This set will be endowed with the compact-open topology.

■ C topological category ~→ category enriched in topological spaces.

Nerve $N(\mathcal{C}) \rightsquigarrow$ an ∞ -category, whose objects are the same of \mathcal{C} , and whose *n*-simplexes are functors

$$\{0 \rightarrow 1 \rightarrow \cdots \rightarrow n-1 \rightarrow n\} \rightarrow \mathcal{C}_{\Delta}.$$

The ∞ -operad \mathbb{E}_k

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem

Definition

Let ${}^{t}\mathbb{E}_{k}$ be the topological category with $Obj(Fin_{*})$ as objects and as morphisms the pairs $(f, \{r_{j}\}_{j=1,...,n})$ where

- $f \in \operatorname{Hom}_{\operatorname{Fin}_*}(\langle m \rangle, \langle n \rangle)$,
- for any $j \in \{1, \ldots, n\}$, $r_j : (0, 1)^k \times f^{-1}(j) \longrightarrow (0, 1)^k$ is a rectilinear embedding.

Topology on $\operatorname{Hom}_{{}^t\mathbb{E}_k}(\langle m \rangle, \langle n \rangle)$: induced by the topology on each $\operatorname{Rect}((0,1)^k \times f^{-1}(j), (0,1)^k)$.

We denote by \mathbb{E}_k the nerve $N({}^t\mathbb{E}_k)$.

Remark

The forgetful functor ${}^t\mathbb{E}_k \to Fin_*$ induces a functor $\mathbb{E}_k \to N(Fin_*)$ which exhibits \mathbb{E}_k as an ∞ -operad.

Fundamental Example: the loop space ΩX

 \mathbb{E}_k -centers of monoidal ∞ -categories

> Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem Any loop space ΩX has an operation $\Omega X \times \Omega X \longrightarrow \Omega X$, given by concatenation of loops, associative **up to homotopy**, but **not** strictly associative.

 $n \in \mathbb{N}, r : (0,1) \times \{1, \ldots, n\} \rightarrow (0,1)$ rectilinear embedding ~ well-defined *n*-ary concatenation law using *r*:

This defines a functor ${}^{t}\mathbb{E}_{1} \longrightarrow \text{Top}^{\times}$: 1 $\langle n \rangle \mapsto (\Omega X)^{n}$ on objects, in particular $\langle 1 \rangle \mapsto \Omega X$ 2 on morphisms, $(\langle m \rangle \xrightarrow{f} \langle n \rangle, \{r_{j}\}) \mapsto (\Omega X)^{m} \longrightarrow (\Omega X)^{n}$ where $(\Omega X)^{f^{-1}(j)} \rightarrow \Omega X$ is the multiple concatenation induced by r_{j} .

\mathbb{E}_k -algebras in symmetric monoidal ∞ -categories

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem Let \mathcal{C}^{\otimes} be a symmetric monoidal (∞ -)category (Spaces[×], Cat[×], Cat[×], Cat[×]_{∞}). Belo of \mathbb{F}_{ℓ} we to oncode the datum of k different multiplication

Role of $\mathbb{E}_k \rightsquigarrow$ to encode the datum of k different multiplication laws on some $A \in C^{\otimes}$, associative *up to homotopy*, that distribute with respect to one another *up to homotopy*.

Definition

An \mathbb{E}_k -algebra in \mathcal{C}^{\otimes} is a functor $\phi : \mathbb{E}_k \to \mathcal{C}^{\otimes}$ over Fin_{*} s.t. (*) ϕ sends inert morphisms to cocartesian morphisms.

The object $A = \phi(\langle 1 \rangle)$ is called the underlying object of ϕ . We say that \mathbb{E}_k acts on $A = \phi(\langle 1 \rangle)$.

Remark

 ΩX is an \mathbb{E}_1 -algebra in Spaces. This generalizes to the case of *k*-fold loop spaces, exhibiting $\Omega^k X$ as an \mathbb{E}_k -algebra in Spaces.

\mathbb{E}_k -categories

\mathbb{E}_k -centers of monoidal ∞ -categories

Guglielmo Nocera

Definition of E_k

Algebras

Centers

Application: the Derived Satake Theorem

Definition

An \mathbb{E}_k -(∞ -)category is an \mathbb{E}_k -algebra in (∞ -)categories.

 \mathbb{E}_1 -category \rightsquigarrow monoidal category (no nontrivial notion of homotopy in the mapping space of a category).

 \mathbb{E}_2 -category \rightsquigarrow *braided* monoidal category (Eckmann-Hilton's theorem).

 \mathbb{E}_k -category, $k \ge 3 \rightsquigarrow$ symmetric monoidal category (mapping spaces between categories are "too small" to contain nontrivial higher coherences).

An \mathbb{E}_k - ∞ -category, k > 2, has "stronger commutativities" than an \mathbb{E}_2 - ∞ -category, but is not symmetric monoidal.

\mathbb{E}_k -centers of monoidal ∞ -categories

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem There is a way to add structure to an \mathbb{E}_{k} - ∞ -category to build a "universal" associated \mathbb{E}_{k+1} - ∞ -category.

Definition

Let C be an \mathbb{E}_k - ∞ -category. A **center** of C is a final object in the ∞ -category of \mathbb{E}_{k+1} -algebras acting on C.

The center is unique up to equivalence and is denoted by $Z_{\mathbb{E}_k}(\mathcal{C})$.

Remark

k = 1, C ordinary category $\rightsquigarrow Z_{\mathbb{E}_1}(C)$ coincides with the classical notion of **Drinfeld center** of a monoidal category.

The classical Geometric Satake Theorem

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem Fix a complex reductive algebraic group G (e.g. GL_n). \check{G} is the Langlands dual group $(\check{GL}_n \simeq GL_n)$.

Theorem (Geometric Satake Theorem; Ginzburg, Mirkovic/Vilonen)

There is an equivalence

$$(\mathsf{Rep}_G,\otimes)\simeq(\mathsf{Perv}_{\check{G}_\mathcal{O}}(\mathsf{Gr}_{\check{G}}),\star)$$

of abelian symmetric monoidal categories.

We want to find a derived version of this theorem (motivation: the Geometric Langlands Conjecture is derived).

The Derived Satake Theorem

 \mathbb{E}_k -centers of monoidal ∞ -categories

> Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem The derived ∞ -category of representations DRep_G is an \mathbb{E}_2 - ∞ -category (forget the \mathbb{E}_∞ -structure... strange, but makes sense at a derived level)

 $\rightsquigarrow Z_{\mathbb{E}_2}(\mathsf{DRep}_G), \mathbb{E}_3\text{-}\infty\text{-category acting on }\mathsf{DRep}_G.$

Theorem (Bezrukavnikov-Finkelberg (triangulated), Haine-Macerato-N. (homotopy-coherent, work in progress))

Analogue of Geometric Satake Equivalence:

 $Z_{\mathbb{E}_2}(\mathsf{DRep}_G) \simeq \mathsf{Sph}(\check{G})$

as ∞ -categories, where Sph(\check{G}) is the natural derived analogue of $\operatorname{Perv}_{\check{G}_{\mathcal{O}}}(\operatorname{Gr}_{\check{G}})$.

[N. 2021]: construction of an "intrinsic" \mathbb{E}_3 -structure on the right-hand-side, making the equivalence \mathbb{E}_3 -monoidal (cfr. symmetric monoidality in the Geometric Satake Theorem).

 $\begin{array}{c} \mathbb{E}_k \text{-centers of} \\ \text{monoidal} \\ \infty \text{-categories} \end{array}$

Guglielmo Nocera

Definition of \mathbb{E}_k

Algebras

Centers

Application: the Derived Satake Theorem

Thank you for your attention!